2.設(shè)$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(-3,5),用$\overrightarrow{a}$、$\overrightarrow$線性表示$\overrightarrow{c}$.

分析 設(shè)$\overrightarrow{c}=m\overrightarrow{a}+n\overrightarrow$,根據(jù)平面向量的基本定理解出m,n.

解答 解:設(shè)$\overrightarrow{c}=m\overrightarrow{a}+n\overrightarrow$,則$\left\{\begin{array}{l}{-3=m}\\{5=n}\end{array}\right.$.
∴$\overrightarrow{c}=-3\overrightarrow{a}+5\overrightarrow$.

點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知2ccosB=2a-b.
(Ⅰ)求角C的大小;
(Ⅱ)若$c=\sqrt{3}$,b-a=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知命題p:|x|>a,q:$\frac{x-1}{2x-1}$>0.若p是q的必要不充分條件.則實(shí)數(shù)a的取值范圍是a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列運(yùn)算正確的個(gè)數(shù)是( 。
①(-3)•2$\overrightarrow{a}$=-6$\overrightarrow{a}$;②2($\overrightarrow{a}$+$\overrightarrow$)-(2$\overrightarrow$-$\overrightarrow{a}$)=3$\overrightarrow{a}$;③($\overrightarrow{a}$+2$\overrightarrow$)-(2$\overrightarrow$+$\overrightarrow{a}$)=0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn
(1)求an及Sn;
(2)令bn=$\frac{1}{{a}_{n}{a}_{n+1}}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在等差數(shù)列{an}中,a1+a2+a3+a4=68,a6+a7+a8+a9+a10=30,則從a15到到a30的和是-368.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知P點(diǎn)是矩形ABCD所在平面內(nèi)一點(diǎn),且矩形ABCD的面積為1,$\overrightarrow{AP}$=$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+2$\frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}$,則$\overrightarrow{PB}$•$\overrightarrow{PD}$的最大值等于( 。
A.5B.5-2$\sqrt{2}$C.5-2$\sqrt{3}$D.5+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知f(x)是一次函數(shù),且f(x+1)=f(x)+1,又f(0)=1,求:
(1)函數(shù)f(x)的表達(dá)式;
(2)g(x)=f[(x+1)2]+f(x+1)+1的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a3=5,S14=196,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{\sqrt{{S}_{n}}•\sqrt{{S}_{n+1}}}$,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案