A. | 5 | B. | 5-2$\sqrt{2}$ | C. | 5-2$\sqrt{3}$ | D. | 5+2$\sqrt{2}$ |
分析 用$\overrightarrow{AB},\overrightarrow{AD}$表示$\overrightarrow{AP},\overrightarrow{BP}$,設(shè)$|\overrightarrow{AB}|=x$,$|\overrightarrow{AD}|=y$,則y=$\frac{1}{x}$.于是$\overrightarrow{PB}$•$\overrightarrow{PD}$可表示為x的函數(shù),利用基本不等式求出最大值.
解答 解:∵四邊形ABCD是矩形,∴$\overrightarrow{AB}•\overrightarrow{AD}=0$.
∵$\overrightarrow{AP}$=$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+2$\frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}$,∴${\overrightarrow{AP}}^{2}=5$,
∵$\overrightarrow{PB}=\overrightarrow{AB}-\overrightarrow{AP}$,$\overrightarrow{PD}=\overrightarrow{AD}-\overrightarrow{AP}$,
∴$\overrightarrow{PB}•\overrightarrow{PD}$=($\overrightarrow{AB}-\overrightarrow{AP}$)•($\overrightarrow{AD}-\overrightarrow{AP}$)=${\overrightarrow{AP}}^{2}$-$\overrightarrow{AB}•\overrightarrow{AP}$-$\overrightarrow{AD}•\overrightarrow{AP}$=5-$\overrightarrow{AB}•$($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+2$\frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}$)-$\overrightarrow{AD}•$($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+2$\frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}$)=5-|$\overrightarrow{AB}$|-2|$\overrightarrow{AD}$|.
設(shè)$|\overrightarrow{AB}|=x$,$|\overrightarrow{AD}|=y$,則xy=1,∴y=$\frac{1}{x}$.
∴$\overrightarrow{PB}•\overrightarrow{PD}$=5-x-2y=5-(x+$\frac{2}{x}$)≤5-2$\sqrt{2}$.當(dāng)且僅當(dāng)x=$\frac{2}{x}$即x=$\sqrt{2}$時取等號.
故選:B.
點評 本題考查了平面向量的數(shù)量積運(yùn)算,向量的線性運(yùn)算的幾何意義,基本不等式,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,1} | B. | {-1} | C. | {1} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com