A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
分析 由條件可以得到$|\overrightarrow{{e}_{1}}|=1,|\overrightarrow{{e}_{2}}|=1$,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=\frac{1}{2}$,然后進(jìn)行數(shù)量積的運(yùn)算便可求出$\overrightarrow{a}•\overrightarrow=-\frac{7}{2}$,${\overrightarrow{a}}^{2}=7,{\overrightarrow}^{2}=7$,從而根據(jù)向量夾角余弦的計(jì)算公式即可求出$cos<\overrightarrow{a},\overrightarrow>=-\frac{1}{2}$,這樣便可得出向量$\overrightarrow{a},\overrightarrow$的夾角.
解答 解:根據(jù)條件,$|\overrightarrow{{e}_{1}}|=|\overrightarrow{{e}_{2}}|=1$,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=\frac{1}{2}$;
$\overrightarrow{a}•\overrightarrow=(2\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})•(-3\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}})$=$-6{\overrightarrow{{e}_{1}}}^{2}+\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+2{\overrightarrow{{e}_{2}}}^{2}$=$-6+\frac{1}{2}+2=-\frac{7}{2}$,${\overrightarrow{a}}^{2}=4{\overrightarrow{{e}_{1}}}^{2}+4\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+{\overrightarrow{{e}_{2}}}^{2}=7$,${\overrightarrow}^{2}=9{\overrightarrow{{e}_{1}}}^{2}-12\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+4{\overrightarrow{{e}_{2}}}^{2}=7$;
∴$cos<\overrightarrow{a},\overrightarrow>=\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}=\frac{-\frac{7}{2}}{\sqrt{7}•\sqrt{7}}=-\frac{1}{2}$;
∴$\overrightarrow{a},\overrightarrow$的夾角為$\frac{2π}{3}$.
故選:C.
點(diǎn)評(píng) 考查單位向量的概念,向量數(shù)量積的運(yùn)算及其計(jì)算公式,向量夾角余弦的計(jì)算公式,以及已知三角函數(shù)求角,清楚向量夾角的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0,1,2) | B. | {-1,0,1,2,3} | C. | {0,1} | D. | {2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com