已知函數(shù)f(x)=2k2x+k,x∈[0,1].函數(shù)g(x)=3x2-2(k2+k+1)x+5,x∈[-1,0].存在x1∈[0,1],x2∈[-1,0],g(x2)=f(x1)成立,求k的取值范圍.(g(x)的值域與f(x)的值域的交集非空.)
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:求出f(x)在[0,1]上的值域,g(x)在[-1,0]上的值域,由f(x)在[0,1]上的值域是g(x)在[-1,0]上的值域的子集說(shuō)明對(duì)任意x1∈[0,1],存在x2∈[-1,0],g(x2)=f(x1)成立.
解答: 解:f(x)=2k2x+k,當(dāng)x∈[0,1]時(shí),函數(shù)單調(diào)遞增,f(x)∈[k,2k2+k],
g(x)=3x2-2(k2+k+1)x+5,
當(dāng)x∈[-1,0]時(shí),g(x)∈[5,2k2+2k+10],
由對(duì)任意x1∈[0,1],存在x2∈[-1,0],g(x2)=f(x1)成立有
[k,2k2+k]⊆[5,2k2+2k+10],
5≤k
2k2+k≤2k2+2k+10
,解得k≥5,
則求k的取值范圍為k≥5.
點(diǎn)評(píng):本題考查了函數(shù)恒成立問題,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,關(guān)鍵是把問題轉(zhuǎn)化為兩函數(shù)在不同定義域內(nèi)的值域間的關(guān)系問題,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知函數(shù)f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求實(shí)數(shù)t的取值范圍;
(2)證明:
b-a
b
<ln
b
a
b-a
a
,其中0<a<b;
(3)設(shè)[x]表示不超過(guò)x的最大整數(shù),證明:[ln(1+n)]≤[1+
1
2
+…+
1
n
]≤1+[lnn](n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求曲線
x=
2
3
(t+
1
t
)
y=
3
4
(t-
1
t
)
 的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求使函數(shù)y=-
3
2
cos(
1
2
x-
π
6
),x∈(-
π
2
,
2
)取得最大值、最小值時(shí)的自變量x的集合,并分別寫出其最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)α是第一象限角,且cosα=
5
13
,求:
2sin(α-3π)-3cos(-α)
4sin(α-5π)+9cos(3π+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2k2x+k,x∈[0,1],函數(shù)g(x)=3x2-2(k2+k+1)x+5,x∈[-1,0].對(duì)任意x1∈[0,1],存在x2∈[-1,0],g(x2)<f(x1)成立.求k的取值范圍.(gmin(x)<fmin(x))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α的終邊上一點(diǎn)坐標(biāo)為P(-3t,4t)(t≠0),求2sinα+cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a
x
+lnx,g(x)=
1
2
bx2-2x+2,a,b∈R.
(Ⅰ)記函數(shù)h(x)=f(x)+g(x),當(dāng)a=0,h(x)在(0,1)上有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)b的取值范圍;
(Ⅱ)記函數(shù)F(x)=|f(x)|,若存在一條過(guò)原點(diǎn)的直線l與y=F(x)的圖象有兩個(gè)切點(diǎn),求a的取值范圍,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
sin
π
3
x,
x≤2011
f(x-4),x>2011
,則f(2012)=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案