2.已知多項(xiàng)式x2+x10=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10,則a2=( 。
A.32B.42C.46D.56

分析 把x2+x10 化為(x+1)2 -2(x+1)+1+[(x+1)-1]10,按照二項(xiàng)式定理展開(kāi),可得(x+1)2 的系數(shù)a2的值.

解答 解:x2+x10=(x+1)2 -2(x+1)+1+[(x+1)-1]10 
=(x+1)2 -2(x+1)+1+[${C}_{10}^{0}$•(x+1)10-${C}_{10}^{1}$•(x+1)9+…+${C}_{10}^{8}$•(x+1)2-${C}_{10}^{9}$•(x+1)+${C}_{10}^{10}$]
a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10,
∴a2=1+${C}_{10}^{8}$=46,
故選:C.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.2015年12月16日到18日第二屆世界互聯(lián)網(wǎng)大會(huì)在烏鎮(zhèn)舉行,17日奇虎360董事長(zhǎng)周鴻祎在回答海外網(wǎng)記者的提問(wèn)時(shí),分享了過(guò)去100天中國(guó)每天遭受DDOS攻擊的次數(shù)數(shù)據(jù),并根據(jù)數(shù)據(jù)作出頻率分布直方圖,如圖所示
(1)預(yù)計(jì)在未來(lái)3天中,有連續(xù)2天的數(shù)值高于180,另一天低于120的概率;
(2)設(shè)X表示未來(lái)3天中數(shù)值高于180的天數(shù),求其分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖所示是某函數(shù)f(x)給出x的值時(shí),求相應(yīng)函數(shù)y的程序框圖.
(1)寫(xiě)出函數(shù)f(x)的解析式;
(2)若輸入的x取x1和x2(|x1|<|x2|)時(shí),輸出的y值相同,試簡(jiǎn)要分析x1與x2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知f(x)為[-3,3]上的偶函數(shù),當(dāng)0≤x≤3時(shí),f(x)=ex+3x.
(1)求-3≤x≤0時(shí),f(x)的解析式;
(2)解關(guān)于a的不等式f(a2-2)>f(2a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)f(x)=(x2+x-1)9(2x+1)6,試求f(x)的展開(kāi)式中:
(1)所有項(xiàng)的系數(shù)和;
(2)所有偶次項(xiàng)的系數(shù)和及所有奇次項(xiàng)的系數(shù)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)(3$\root{3}{x}$+$\frac{1}{\sqrt{x}}$)n的展開(kāi)式中的各項(xiàng)系數(shù)之和為P,而它的二項(xiàng)式系數(shù)之和為S.若P+S=272,那么展開(kāi)式中x-2項(xiàng)的系數(shù)是( 。
A.1B.12C.54D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知x,y滿足:$\left\{\begin{array}{l}{x≤2}\\{x-2y≥0}\\{x+2y≥0}\end{array}\right.$,則$\frac{2y-x+1}{x+1}$的取值范圍是( 。
A.[-1,$\frac{1}{3}$]B.[-1,1]C.[0,$\frac{1}{3}$]D.[0,$\frac{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC中,已知$\frac{sin(A-B)}{sin(A+B)}$=$\frac{2c-b}{2c}$,求sin$\frac{A}{2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,三棱柱ABC-A1B1C1中,平面AA1B1B⊥平面ABC,D是AC的中點(diǎn).
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)若∠A1AB=∠ACB=60°,AB=BB1,AC=2,BC=1,求三棱錐A1-ABD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案