1.已知數(shù)列{an}(n∈N*)是各項(xiàng)均為正數(shù)且公比不等于1的等比數(shù)列,對(duì)于函數(shù)y=f(x),若數(shù)列{lnf(an)}為等差數(shù)列,則稱函數(shù)f(x)為“保比差數(shù)列函數(shù)”.現(xiàn)有定義在(0,+∞)上的三個(gè)函數(shù):①f(x)=$\frac{1}{x}$;②f(x)=ex;③f(x)=$\sqrt{x}$;④f(x)=2x,則為“保比差數(shù)列函數(shù)”的是( 。
A.③④B.①②④C.①③④D.①③

分析 設(shè)數(shù)列{an}的公比為q(q≠1),利用保比差數(shù)列函數(shù)的定義,驗(yàn)證數(shù)列{lnf(an)}為等差數(shù)列,即可得到結(jié)論.

解答 解:設(shè)數(shù)列{an}的公比為q(q≠1)
①由題意,lnf(an)=ln$\frac{1}{{a}_{n}}$,∴l(xiāng)nf(an+1)-lnf(an)=ln$\frac{1}{{a}_{n+1}}$-ln$\frac{1}{{a}_{n}}$=ln$\frac{{a}_{n}}{{a}_{n+1}}$=-lnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;
②由題意,lnf(an)=ln${e}^{{a}_{n}}$,∴l(xiāng)nf(an+1)-lnf(an)=ln${e}^{{a}_{n+1}}$-ln${e}^{{a}_{n}}$=an+1-an不是常數(shù),∴數(shù)列{lnf(an)}不為等差數(shù)列,不滿足題意;
③由題意,lnf(an)=ln$\sqrt{{a}_{n}}$,∴l(xiāng)nf(an+1)-lnf(an)=ln$\sqrt{{a}_{n+1}}$-ln$\sqrt{{a}_{n}}$=$\frac{1}{2}$lnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;
④由題意,lnf(an)=ln(2an),∴l(xiāng)nf(an+1)-lnf(an)=ln(2an+1)-ln(2an)=lnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;
綜上,為“保比差數(shù)列函數(shù)”的所有序號(hào)為①③④
故選:C.

點(diǎn)評(píng) 本題考查新定義,考查對(duì)數(shù)的運(yùn)算性質(zhì),考查等差數(shù)列的判定,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知M={α|α=$\frac{4kπ}{3}$,k∈Z},N={α|α=2kπ±$\frac{2π}{3}$,k∈Z},P={α|α=2kπ,k∈Z},則集合M、N、P滿足關(guān)系式( 。
A.M=(N∪P)B.M?(N∪P)C.M?(N∪P)D.M∩(N∪P)=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如果奇函數(shù)f(x)在區(qū)間[4,11]上是增函數(shù)且最小值為5,那么f(x)在[-11,-4]上是( 。
A.增函數(shù)且最大值為-5B.增函數(shù)且最小值為-5
C.減函數(shù)且最小值為-5D.減函數(shù)且最大值為-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知二次函數(shù)f(x)=2x2-4(a-1)x-a2+2a+9,若在[-1,1]上至少存在一個(gè)實(shí)數(shù)m,使得f(m)>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若x0是函數(shù) f(x)=lgx+x-2的一個(gè)零點(diǎn),則x0屬于區(qū)間(  )
A.(0,1)B.(1,1.5)C.(1.5,2)D.(2,2.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知f(x+1)的定義域[-1,1],則函數(shù)f(x-1)的定義域?yàn)椋ā 。?table class="qanwser">A.[0,2]B.[1,3]C.[-1,1]D.[-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若函數(shù)f(x)唯一的一個(gè)零點(diǎn)同時(shí)在區(qū)間(0,16)、(0,8)、(0,4)、(0,2)內(nèi),那么下列命題中正確的是( 。
A.函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn)B.函數(shù)f(x)在區(qū)間(0,1)或(1,2)內(nèi)有零點(diǎn)
C.函數(shù)f(x)在區(qū)間[2,16)內(nèi)無(wú)零點(diǎn)D.函數(shù)f(x)在區(qū)間(1,16)內(nèi)無(wú)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.求函數(shù)y=(2x-3)(x+2)+(3x+1)(1-x)在x=3處的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)c,b是兩條直線,α,β是兩個(gè)平面,下列能推出c⊥b的是( 。
A.c⊥α,b∥β,α⊥βB.c⊥α,b⊥β,α∥βC.c?α,b⊥β,α∥βD.c?α,b∥β,α⊥β

查看答案和解析>>

同步練習(xí)冊(cè)答案