A. | ③④ | B. | ①②④ | C. | ①③④ | D. | ①③ |
分析 設(shè)數(shù)列{an}的公比為q(q≠1),利用保比差數(shù)列函數(shù)的定義,驗(yàn)證數(shù)列{lnf(an)}為等差數(shù)列,即可得到結(jié)論.
解答 解:設(shè)數(shù)列{an}的公比為q(q≠1)
①由題意,lnf(an)=ln$\frac{1}{{a}_{n}}$,∴l(xiāng)nf(an+1)-lnf(an)=ln$\frac{1}{{a}_{n+1}}$-ln$\frac{1}{{a}_{n}}$=ln$\frac{{a}_{n}}{{a}_{n+1}}$=-lnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;
②由題意,lnf(an)=ln${e}^{{a}_{n}}$,∴l(xiāng)nf(an+1)-lnf(an)=ln${e}^{{a}_{n+1}}$-ln${e}^{{a}_{n}}$=an+1-an不是常數(shù),∴數(shù)列{lnf(an)}不為等差數(shù)列,不滿足題意;
③由題意,lnf(an)=ln$\sqrt{{a}_{n}}$,∴l(xiāng)nf(an+1)-lnf(an)=ln$\sqrt{{a}_{n+1}}$-ln$\sqrt{{a}_{n}}$=$\frac{1}{2}$lnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;
④由題意,lnf(an)=ln(2an),∴l(xiāng)nf(an+1)-lnf(an)=ln(2an+1)-ln(2an)=lnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;
綜上,為“保比差數(shù)列函數(shù)”的所有序號(hào)為①③④
故選:C.
點(diǎn)評(píng) 本題考查新定義,考查對(duì)數(shù)的運(yùn)算性質(zhì),考查等差數(shù)列的判定,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M=(N∪P) | B. | M?(N∪P) | C. | M?(N∪P) | D. | M∩(N∪P)=∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 增函數(shù)且最大值為-5 | B. | 增函數(shù)且最小值為-5 | ||
C. | 減函數(shù)且最小值為-5 | D. | 減函數(shù)且最大值為-5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (1,1.5) | C. | (1.5,2) | D. | (2,2.5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn) | B. | 函數(shù)f(x)在區(qū)間(0,1)或(1,2)內(nèi)有零點(diǎn) | ||
C. | 函數(shù)f(x)在區(qū)間[2,16)內(nèi)無(wú)零點(diǎn) | D. | 函數(shù)f(x)在區(qū)間(1,16)內(nèi)無(wú)零點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | c⊥α,b∥β,α⊥β | B. | c⊥α,b⊥β,α∥β | C. | c?α,b⊥β,α∥β | D. | c?α,b∥β,α⊥β |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com