12.現(xiàn)有16張不同的卡片,其中紅色、黃色、藍(lán)色、綠色卡片各4張.從中任取3張,要求這3張卡片不能是同一種顏色,且紅色卡片至多1張,不同取法的種數(shù)為( 。
A.484B.472C.252D.232

分析 用間接法分析,先求出“從16張卡片中任取3張”的情況數(shù)目,再分析計(jì)算其中“同一種顏色”以及“有2張紅色”的情況數(shù)目,用“從16張卡片中任取3張”的情況數(shù)目減去“同一種顏色”以及“有2張紅色”的情況數(shù)目即可得答案.

解答 解:根據(jù)題意,不考慮限制條件,從16張卡片中任取3張有C163種情況,
其中如果取出的3張為同一種顏色,有4C43種情況,
如果取出的3張有2張紅色的卡片,有C42C121種情況,
則滿足條件的取法有C163-4C43-C42C121=560-16-72=472種;
故選:B.

點(diǎn)評(píng) 本題考查排列、組合的應(yīng)用,解題時(shí)注意利用排除法分析,即先不考慮限制條件,求出全部的情況數(shù)目,再分析排出其中不符合條件的情況數(shù)目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知樣本9,10,11,x,y的平均數(shù)是10,標(biāo)準(zhǔn)差是$\sqrt{2}$,則xy=96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知平面向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(2,1),$\overrightarrow{c}$=(t,2),且等差數(shù)列{an}的首項(xiàng)為$\overrightarrow{a}$•$\overrightarrow$,公差為|$\overrightarrow{a}$-$\overrightarrow$|,前4項(xiàng)的和為$\overrightarrow{a}$•($\overrightarrow$+$\overrightarrow{c}$),求實(shí)數(shù)t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(1)已知拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=-$\frac{1}{4}$,求拋物線的標(biāo)準(zhǔn)方程;
(2)已知雙曲線的焦點(diǎn)在x軸上,且過(guò)點(diǎn)($(-\sqrt{2}$,-$\sqrt{3}$),($\frac{\sqrt{15}}{3}$,$\sqrt{2}$),求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.等差數(shù)列{an}的前n項(xiàng)和為Sn,S5=-5,S9=-45,則a4的值為( 。
A.-1B.-2C.-3D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.兩條平行線4x+3y+1=0與4x+3y-9=0的距離是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.甲乙兩班進(jìn)行數(shù)學(xué)考試,按照大于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到下列聯(lián)表.已知在100人中隨機(jī)抽取1人為優(yōu)秀的概率為$\frac{3}{10}$.
優(yōu)秀非優(yōu)秀總計(jì)
甲班10
乙班30
合計(jì)100
(1)請(qǐng)完成上面的列聯(lián)表;
P(k2≥k00.100.050.025
k02.7063.8415.024
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可能性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”?
參考公式:k2=$\frac{{n(ad-bc{)^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=$\sqrt{3}$cos(2x-$\frac{π}{2}$)+8sin2($\frac{π}{4}$+$\frac{x}{2}$)cos2($\frac{π}{4}$+$\frac{x}{2}$)-1.
(1)求f(x)的最小正周期和對(duì)稱中心;
(2)若f(α)=1,α∈[0,π),求α的值;
(3)若cos(x+$\frac{π}{6}$)=$\frac{4}{5}$,x∈(0,$\frac{π}{2}$),求f(x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在等差數(shù)列{an}中,a2,a16是方程x2-6x-3=0的兩根,則a5+a9+a13=9.

查看答案和解析>>

同步練習(xí)冊(cè)答案