【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),若函數(shù)的兩個(gè)極值點(diǎn)分別為、,證明.

【答案】(1)的單調(diào)遞增區(qū)間為,;無單調(diào)遞減區(qū)間;(2)證明見解析.

【解析】

(1)求得,分類討論,即可求解的單調(diào)區(qū)間,得到答案;

(2)根據(jù)是函數(shù)的兩個(gè)零點(diǎn),設(shè)是方程的兩個(gè)實(shí)數(shù)解,再根據(jù)二次函數(shù)的性質(zhì)函數(shù)處取得極大值,在處取得極小值,進(jìn)而得到,代入得,令,則,得到,設(shè),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.

(1)由題意,當(dāng)時(shí),,

①當(dāng)時(shí),恒成立,所以函數(shù)在區(qū)間上單調(diào)遞增;

②當(dāng)時(shí),記,則

所以當(dāng)時(shí),,∴單調(diào)遞減,且;

當(dāng)時(shí),單調(diào)遞增,且,

所以當(dāng)時(shí),,函數(shù)單調(diào)遞增.

綜上所述,函數(shù)的單調(diào)遞增區(qū)間為;無單調(diào)遞減區(qū)間.

(2)

,

是函數(shù)的兩個(gè)零點(diǎn),

是方程的兩個(gè)實(shí)數(shù)解,

,且,得,則有,

不妨設(shè),

,即得

,,

即得,從而得到,

,且,

由二次函數(shù)的圖象及性質(zhì)知函數(shù)處取得極大值,在處取得極小值.

, (*)

為方程的根,,

代人(*)式得,

,則,

設(shè),,,單調(diào)遞減,

從而有,.

,即得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知分別為橢圓的左、右焦點(diǎn),且橢圓經(jīng)過點(diǎn)和點(diǎn),其中為橢圓的離心率.

(1)求橢圓的方程;

(2)過點(diǎn)的直線橢圓于另一點(diǎn),點(diǎn)在直線上,且.若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與橢圓切于點(diǎn),與圓交于點(diǎn),圓在點(diǎn)處的切線交于點(diǎn)為坐標(biāo)原點(diǎn),則的面積的最大值為( )

A.B.2C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市政府為減輕汽車尾氣對(duì)大氣的污染,保衛(wèi)藍(lán)天,鼓勵(lì)廣大市民使用電動(dòng)交通工具出行,決定為電動(dòng)車(含電動(dòng)自行車和電動(dòng)汽車)免費(fèi)提供電池檢測服務(wù).現(xiàn)從全市已掛牌照的電動(dòng)車中隨機(jī)抽取100輛委托專業(yè)機(jī)構(gòu)免費(fèi)為它們進(jìn)行電池性能檢測,電池性能分為需要更換、尚能使用、較好、良好四個(gè)等級(jí),并分成電動(dòng)自行車和電動(dòng)汽車兩個(gè)群體分別進(jìn)行統(tǒng)計(jì),樣本分布如圖.

(1)采用分層抽樣的方法從電池性能較好的電動(dòng)車中隨機(jī)抽取9輛,再從這9輛中隨機(jī)抽取2輛,求至少有一輛為電動(dòng)汽車的概率;

(2)為進(jìn)一步提高市民對(duì)電動(dòng)車的使用熱情,市政府準(zhǔn)備為電動(dòng)車車主一次性發(fā)放補(bǔ)助,標(biāo)準(zhǔn)如下:①電動(dòng)自行車每輛補(bǔ)助300元;②電動(dòng)汽車每輛補(bǔ)助500元;③對(duì)電池需要更換的電動(dòng)車每輛額外補(bǔ)助400元.試求抽取的100輛電動(dòng)車執(zhí)行此方案的預(yù)算;并利用樣本估計(jì)總體,試估計(jì)市政府執(zhí)行此方案的預(yù)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地的中小學(xué)辦學(xué)條件在政府的教育督導(dǎo)下,迅速得到改變.教育督導(dǎo)一年后.分別隨機(jī)抽查了初中(用表示)與小學(xué)(用表示)各10所學(xué)校.得到相關(guān)指標(biāo)的綜合評(píng)價(jià)得分(百分制)的莖葉圖如圖所示.則從莖葉圖可得出正確的信息為( )(80分及以上為優(yōu)秀). ①初中得分與小學(xué)得分的優(yōu)秀率相同;②初中得分與小學(xué)得分的中位數(shù)相同③初中得分的方差比小學(xué)得分的方差大④初中得分與小學(xué)得分的平均分相同.

A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)記,試判斷函數(shù)的極值點(diǎn)的情況;

(Ⅱ)若有且僅有兩個(gè)整數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面ABCD是矩形,PA⊥平面ABCD, PAAD2,EF分別為PA,AB的中點(diǎn),且DFCE.

(1)求AB的長;

(2)求直線CF與平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,,且的最小值為,的圖象的相鄰兩條對(duì)稱軸之間的距離為的圖象關(guān)于原點(diǎn)對(duì)稱.

(1)求函數(shù)的解析式和單調(diào)遞增區(qū)間;

(2)在中,角所對(duì)的邊分別為,且,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,底面為等邊三角形,分別是的中點(diǎn).

1)證明:平面平面;

2)如何在上找一點(diǎn),使平面并說明理由;

3)若,對(duì)于(2)中的點(diǎn),求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案