已知tanα=-3,且α是第二象限的角,
(1)求sinα,cosα的值;
(2)求sin(2α-
π
6
)的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,二面角A-BD1-B1的大小為( 。
A、90°B、60°
C、120°D、45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

企業(yè)管理者通過對(duì)某電子產(chǎn)品制造廠做上午班工人工作效率的研究表明,一個(gè)中等技術(shù)水平的工人,從8:00開始工作,t小時(shí)后可裝配某電子產(chǎn)品的個(gè)數(shù)為Q(t)=-t3+3t2+9t,則這個(gè)工人從8:00到12:00何時(shí)的工作效率最高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,且∠DAB=60°.側(cè)面PAD為正三角形,其所在的平面垂直于底面ABCD,G為AD邊的中點(diǎn).
(1)求證:BG⊥平面PAD;
(2)求平面PBG與平面PCD所成二面角的平面角的余弦值;
(3)若E為BC邊的中點(diǎn),能否在棱PC上找到一點(diǎn)F,使平面DEF⊥平面ABCD,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C的兩焦點(diǎn)坐標(biāo)分別為F1(-5
3
,0)和F2(5
3
,0),且橢圓經(jīng)過點(diǎn)P(-5
3
,-
5
2
)

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)Q(-6,0)作直線l交橢圓C于M、N兩點(diǎn)(直線l不與x軸重合),A為橢圓的左頂點(diǎn),試證明:∠MAN=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知 斜率為
4
5
的直線?與橢圓
x2
a2
+
y2
b2
=1(a>b>0),相交于A,B,兩點(diǎn),若AB的中點(diǎn)P的坐標(biāo)為(
-5
2
,2),求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求O點(diǎn)到面ABC的距離;
(2)求異面直線BE與AC所成的角的余弦值;
(3)求二面角E-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn=
1
(3n-2)•3n
,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,若a1=1,an>0,Sn+1+Sn=
an+12+3
4
,求an,Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案