【題目】已知函數(shù)f(x)=x2﹣|x2﹣ax﹣2|,a為實數(shù).
(1)當(dāng)a=1時,求函數(shù)f(x)在[0,3]上的最小值和最大值;
(2)若函數(shù)f(x)在(﹣∞,﹣1)和(2,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍.

【答案】
(1)解:當(dāng)a=1時,

結(jié)合圖象可知f(x)在 上單調(diào)遞減,在 上單調(diào)遞增,,

f(x)在[0,3]上的最小值為 ,

f(x)在[0,3]上的最大值為f(3)=5.


(2)解:令x2﹣ax﹣2=0,∵△=a2+8>0,

必有兩根 ,

若函數(shù)f(x)在(﹣∞,﹣1)和(2,+∞)上單調(diào)遞增,

,解得:1≤a≤8


【解析】(1)當(dāng)a=1時,求出函數(shù)f(x)的表達式,結(jié)合圖象即可求出函數(shù)在[0,3]上的最小值和最大值;(2)將函數(shù)表示為分段函數(shù)形式,結(jié)合一元二次函數(shù)單調(diào)性的性質(zhì)和關(guān)系建立不等式進行求解即可.
【考點精析】本題主要考查了函數(shù)的最值及其幾何意義的相關(guān)知識點,需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)組織了一次高二文科學(xué)生數(shù)學(xué)學(xué)業(yè)水平模擬測試,學(xué)校從測試合格的男、女生中各隨機抽取100人的成績進行統(tǒng)計分析,分別制成了如圖所示的男生和女生數(shù)學(xué)成績的頻率分布直方圖.

(Ⅰ)若所得分數(shù)大于等于80分認定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?

(Ⅱ)在(Ⅰ)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=3|x+2|﹣|x﹣4|.
(1)求不等式f(x)>2的解集;
(2)設(shè)m,n,k為正實數(shù),且m+n+k=f(0),求證:mn+mk+nk≤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題。
(1)已知函數(shù)f(x)= ,判斷函數(shù)的奇偶性,并加以證明.
(2)是否存在a使f(x)= 為R上的奇函數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=logax(0<a<1)在[a,2a]上的最大值是其最小值的2倍,則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間上單調(diào)遞減的是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.

現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min,在甲出發(fā)2 min后,乙從A乘纜車到B,在B處停留1 min后,再從B勻速步行到C.假設(shè)纜車勻速直線運行的速度為130 m/min,山路AC長為1 260 m,經(jīng)測量,cos A=,cos C=

(1)求索道AB的長;

(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?

(3)為使兩位游客在C處互相等待的時間不超過3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx+c在點x=2處取得極值c﹣16.
(1)求a,b的值;
(2)若f(x)有極大值28,求f(x)在[﹣3,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知具有相關(guān)關(guān)系的兩個變量之間的幾組數(shù)據(jù)如下表所示:

(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計當(dāng)時, 的值;

(3)將表格中的數(shù)據(jù)看作五個點的坐標(biāo),則從這五個點中隨機抽取3個點,記落在直線右下方的點的個數(shù)為,求的分布列以及期望.

參考公式: .

查看答案和解析>>

同步練習(xí)冊答案