【題目】解答題。
(1)已知函數(shù)f(x)= ,判斷函數(shù)的奇偶性,并加以證明.
(2)是否存在a使f(x)= 為R上的奇函數(shù),并說(shuō)明理由.

【答案】
(1)解:f(x)的定義域?yàn)镽,且 ;

∴f(x)為奇函數(shù)


(2)解:f(x)為R上的奇函數(shù);

;

;

即存在a= 使f(x)為R上的奇函數(shù)


【解析】(1)可看出f(x)的定義域?yàn)镽,并容易得出f(﹣x)=﹣f(x),從而得出f(x)為奇函數(shù);(2)f(x)為R上的奇函數(shù)時(shí),一定有f(0)=0,這樣即可求出a的值,從而判斷出存在a使得f(x)為R上的奇函數(shù).
【考點(diǎn)精析】利用函數(shù)的奇偶性對(duì)題目進(jìn)行判斷即可得到答案,需要熟知偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示是一樣本的頻率分布直方圖,則由圖形中的數(shù)據(jù),可以估計(jì)眾數(shù)與中位數(shù)分別是(
A.12.5 12.5
B.12.5 13
C.13 12.5
D.13 13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線(xiàn)的普通方程為,曲線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線(xiàn)的極坐標(biāo)方程;

(2)求曲線(xiàn)焦點(diǎn)的極坐標(biāo),其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn) (a>0,b>0)的中心為O,左焦點(diǎn)為F,P是雙曲線(xiàn)上的一點(diǎn) =0且4 =3 ,則該雙曲線(xiàn)的離心率是( )
A.
B.
C.
+
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)記函數(shù)的兩個(gè)零點(diǎn)分別為,且.已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面內(nèi), ,| |=| |=2, = + ,若| |<1,則| |的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣|x2﹣ax﹣2|,a為實(shí)數(shù).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在[0,3]上的最小值和最大值;
(2)若函數(shù)f(x)在(﹣∞,﹣1)和(2,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省數(shù)學(xué)學(xué)業(yè)水平考試成績(jī)分為A、B、C、D四個(gè)等級(jí),在學(xué)業(yè)水平成績(jī)公布后,從該省某地區(qū)考生中隨機(jī)抽取60名考生,統(tǒng)計(jì)他們的數(shù)學(xué)成績(jī),部分?jǐn)?shù)據(jù)如下:

等級(jí)

A

B

C

D

頻數(shù)

24

12

頻率

0.1


(1)補(bǔ)充完成上述表格中的數(shù)據(jù);
(2)現(xiàn)按上述四個(gè)等級(jí),用分層抽樣的方法從這60名考生中抽取10名,在這10名考生中,從成績(jī)A等和B等的所有考生中隨機(jī)抽取2名,求至少有一名成績(jī)?yōu)锳等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四組函數(shù)中,f(x)與g(x)是同一函數(shù)的一組是(
A.f(x)=|x|,g(x)=
B.f(x)=x,g(x)=( 2
C.f(x)= ,g(x)=x+1
D.f(x)=1,g(x)=x0

查看答案和解析>>

同步練習(xí)冊(cè)答案