給出下列四個(gè)命題:
①已知a,b,m都是正數(shù),且
a+m
b+m
a
b
,則a<b;
②若函數(shù)f(x)=lg(ax+1)的定義域是{x|x<1},則a<-1;
③已知x∈(0,π),則y=sinx+
2
sinx
的最小值為2
2

④已知a、b、c成等比數(shù)列,a、x、b成等差數(shù)列,b、y、c也成等差數(shù)列,則
a
x
+
c
y
的值等于2;
⑤已知函數(shù)f(x)=ex-1,g(x)=-x2+4x-3,若有f(a)=g(b),則b的取值范圍為(2-
2
,2+
2
).
其中正確命題的序號(hào)是
 
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:①利用不等式的性質(zhì)即可得出;
②取a=-2即可判斷出;
③換元利用函數(shù)的單調(diào)性即可得出;
④先求出函數(shù)f(x)的值域,由f(a)=g(b),可知兩個(gè)函數(shù)的值域相同,即可得出.
解答: 解:對(duì)于①,由且
a+m
b+m
a
b
,又a,b,m都是正數(shù),∴b(a+m)-a(b+m)=m(b-a)>0,∴b-a>0,即a<b.故①正確;
對(duì)于②,令a=-2,此時(shí)函數(shù)f(x)=lg(-2x+1)的定義域是{x|x<
1
2
},不是{x|x<1},故②錯(cuò)誤;
對(duì)于③,設(shè)sinx=t∈[0,1],則y=t+
2
t
,∵函數(shù)y=t+
2
t
在區(qū)間[0,1]上單調(diào)遞減,
∴此函數(shù)的最小值是f(1)=3,即y=sinx+
2
sinx
的最小值為3,故③錯(cuò)誤;
對(duì)于④,由題意,b2=ac,2x=a+b,2y=b+c,∴
a
x
+
c
y
=
2a
a+b
+
2c
b+c
=
4ac+2ab+2bc
ab+ac+b2+bc
=
4ac+2ab+2bc
2ac+ab+bc
=2,故④正確;
對(duì)于⑤,由題意,f(x)=ex-1>-1,
若有f(a)=g(b),則g(b)=-b2+4b-3>-1,解得2-
2
<b<2+
2
.故⑤正確.
綜上可知:只有①④⑤正確.
故答案為:①④⑤.
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性值域、一元二次不等式的解法等基礎(chǔ)知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|.
(Ⅰ)若當(dāng)g(x)≤5時(shí),恒有f(x)≤6,求a的最大值;
(Ⅱ)若當(dāng)x∈R時(shí),恒有f(x)+g(x)≥3,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(1+4k)x-(2-3k)y-(3+12k)=0(k∈R)所經(jīng)過(guò)的定點(diǎn)F恰好是中心在原點(diǎn)的橢圓C的一個(gè)焦點(diǎn),且橢圓C上的點(diǎn)到點(diǎn)F的最大距離為8.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)A的坐標(biāo)為(-2,1),M為橢圓C上任意一點(diǎn),求|MF|+|MA|的最大值;
(Ⅲ)已知圓O:x2+y2=1,直線l:mx+ny=1.試證明當(dāng)點(diǎn)P(m,n)在橢圓C上運(yùn)動(dòng)時(shí),直線l與圓O恒相交,并求直線l被圓O所截得的弦長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P(x,y)為不等式組
x2+y2≤1
x-y-1≤0
x+y+1≥0
表示的平面區(qū)域上一點(diǎn),則x+2y取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,直線ρ(sinθ-cosθ)=a與曲線ρ=2cosθ-4sinθ相交于A,B兩點(diǎn),若|AB|=2
3
,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(m-2)x2-4mx+2m-6的圖象與x軸的負(fù)半軸有交點(diǎn),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖展示了一個(gè)由區(qū)間(0,1)到實(shí)數(shù)集R的映射過(guò)程:區(qū)間(0,1)中的實(shí)數(shù)m對(duì)應(yīng)數(shù)軸上的點(diǎn)M,如圖①;將線段AB圍成一個(gè)圓,使兩端點(diǎn)A、B恰好重合,如圖②;再將這個(gè)圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點(diǎn)A的坐標(biāo)為(0,1),在圖形變化過(guò)程中,圖①中線段AM的長(zhǎng)度對(duì)應(yīng)于圖③中的弧ADM的長(zhǎng)度,如圖③.圖③中直線AM與x軸交于點(diǎn)N(n,0),則m的象就是n,記作f(m)=n.
給出下列命題:
①f(
1
4
)=1;
②f(x)在定義域(0,1)上單調(diào)遞增;
③f(x)為偶函數(shù); ④f(x)=-f(1-x);
⑤關(guān)于m的不等式|f(m)|≤1的解集為[
1
4
,1]

則所有正確的命題序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5;則f(x)=a2x2+a1x+a0的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列三個(gè)命題:
①在區(qū)間[0,1]內(nèi)任取兩個(gè)實(shí)數(shù)x,y,則事件“x2+y2>1成立”的概率是1-
π
4
;
②函數(shù)f(x)關(guān)于(3,0)點(diǎn)對(duì)稱,滿足f(6+x)=f(6-x),且當(dāng)x∈[0,3]時(shí)函數(shù)為增函數(shù),則f(x)在[6,9]上為減函數(shù);
③滿足A=30°,BC=1,AB=
3
的△ABC有兩解.
其中正確命題的個(gè)數(shù)為(  )
A、1B、2C、3D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案