【題目】已知數(shù)列{an}的前n項和為Sn , 且a1=1,Sn+1﹣2Sn=1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=n+ ,求數(shù)列{bn}的前n項和Tn .
【答案】
(1)解:a1=1,Sn+1﹣2Sn=1,
即為Sn+1+1=2(Sn+1),
即有數(shù)列{Sn+1}是以S1+1=2,2為公比的等比數(shù)列,
則Sn+1=22n﹣1=2n,
即Sn=2n﹣1,n∈N*,
當(dāng)n≥2時,an=Sn﹣Sn﹣1=2n﹣1﹣(2n﹣1﹣1)=2n﹣1,
上式對n=1也成立,
則數(shù)列{an}的通項公式為an=2n﹣1,n∈N*
(2)解:bn=n+ =n+n( )n﹣1,
前n項和Tn=(1+2+3+…+n)+[11+2( )+3( )2+…+n( )n﹣1],
設(shè)Mn=11+2( )+3( )2+…+n( )n﹣1,
Mn=1 +2( )2+3( )3+…+n( )n,
相減可得, Mn=1+ +( )2+( )3+…+( )n﹣1﹣n( )n
= ﹣n( )n,
化簡可得Mn=4﹣(n+2)( )n﹣1,
則Tn= n(n+1)+4﹣(n+2)( )n﹣1
【解析】(1)由題意可得Sn+1+1=2(Sn+1),即有數(shù)列{Sn+1}是以S1+1=2,2為公比的等比數(shù)列,運(yùn)用等比數(shù)列的通項公式和數(shù)列的遞推式,可得所求通項公式;(2)求出bn=n+ =n+n( )n﹣1 , 運(yùn)用數(shù)列的求和方法:分組求和和錯位相減法,結(jié)合等差數(shù)列和等比數(shù)列的求和公式,化簡計算即可得到所求和.
【考點精析】認(rèn)真審題,首先需要了解數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關(guān)系),還要掌握數(shù)列的通項公式(如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2alnx.
(1)若函數(shù)f(x)的圖象在(2,f(2))處的切線斜率為1,求實數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù) 在[1,2]上是減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,且2asinB﹣ bcosA=0.
(1)求cosA;
(2)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(ex﹣1)(x﹣1)k , k∈N* , 若函數(shù)y=f(x)在x=1處取到極小值,則k的最小值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{bn}滿足bn=| |,其中a1=2,an+1= .
(1)求b1 , b2 , b3 , 并猜想bn的表達(dá)式(不必寫出證明過程);
(2)由(1)寫出數(shù)列{bn}的前n項和Sn , 并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將A、B兩枚骰子各拋擲一次,觀察向上的點數(shù),問:
(1)共有多少種不同的結(jié)果?
(2)兩枚骰子點數(shù)之和是3的倍數(shù)的結(jié)果有多少種?
(3)兩枚骰子點數(shù)之和是3的倍數(shù)的概率為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)節(jié)能降耗技術(shù)改造后,在生產(chǎn)某產(chǎn)品過程中幾錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾 組對應(yīng)數(shù)據(jù)如表所示:
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | a |
若根據(jù)表中數(shù)據(jù)得出y關(guān)于x的線性回歸方程為 =0.7x+0.35,則表中a的值為( )
A.3
B.3.15
C.3.5
D.4.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(0,2),B(4,6), =t1 +t2 ,其中t1、t2為實數(shù);
(1)若點M在第二或第三象限,且t1=2,求t2的取值范圍;
(2)求證:當(dāng)t1=1時,不論t2為何值,A、B、M三點共線;
(3)若t1=a2 , ⊥ ,且△ABM的面積為12,求a和t2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com