計(jì)算:log 
1
2
1
3
=
 
考點(diǎn):對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用對數(shù)的運(yùn)算法則化簡求解即可.
解答: 解:log 
1
2
1
3
=log2-13-1=log23.
故答案為:log23.
點(diǎn)評:本題考查對數(shù)的運(yùn)算法則的應(yīng)用,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O的參數(shù)方程為
x=1+
2
cosα
y=1+
2
sinα
(a為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系(兩坐標(biāo)系中取相同的長度單位),直線l的極坐標(biāo)方程為ρsin(θ-
π
4
)=
2

(1)求圓O的一般方程和直線l的直角坐標(biāo)方程;
(2)求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,為奇函數(shù)的是( 。
A、f(x)=x2-2x
B、f(x)=
x
C、f(x)=x-
1
x
D、f(x)=x2+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式的值:
(1)(
1
4
-2+(
1
6
6
 
1
3
+
3
+
2
3
-
2
-(1.03)0•(-
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)集合中,是空集的是( 。
A、{x|x+3=3}
B、{(x,y)|y2=-x2,x,y∈R}
C、{x|x2≤0}
D、{x|x2-x+1=0,x∈R}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx+
1
2
cos2x,若將其圖象向右平移φ(φ>0)個(gè)單位所得的圖象關(guān)于原點(diǎn)對稱,則φ的最小值為(  )
A、
π
6
B、
6
C、
π
12
D、
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2-x
+
1
x
的定義域是( 。
A、(-∞,2]
B、(-∞,0)∪( 。,2]
C、(0,2]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinωxcosωx+2
3
sin2ωx-
3
(ω>0)的最小正周期是π.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向左平移
π
3
個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,求y=g(x)的解析式及其在[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集為[-2,3],求實(shí)數(shù)a的值;
(2)在(1)的條件下,若存在實(shí)數(shù)n,使得f(n)≤m-f(-n)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案