【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的年平均維修費用(萬元)(即維修費用之和除以使用年限),有如下的統(tǒng)計資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖;
(2)求關(guān)于的線性回歸方程;
(3)估計使用年限為10年時所支出的年平均維修費用是多少?
參考公式:
【答案】(1)見解析;(2);(3)12.38.
【解析】
(1)根據(jù)題中數(shù)據(jù),可直接作出散點圖;
(2)根據(jù)散點圖,判斷兩變量呈線性相關(guān)關(guān)系,由公式,結(jié)合數(shù)據(jù)求出和,進而可得出回歸方程;
(3)將代入(2)中方程,即可求出結(jié)果.
(1)畫出散點圖如圖所示:
(2)從散點圖可以看出,這些點大致分布在一條直線的附近,因此,兩變量呈線性相關(guān)關(guān)系.
由題表數(shù)據(jù)可得,,
由公式可得,,
即回歸方程是.
(3)由(2)可得,
當時,;
即,使用年限為10年時所支出的年平均維修費用是.
科目:高中數(shù)學 來源: 題型:
【題目】從某工廠的一個車間抽取某種產(chǎn)品件,產(chǎn)品尺寸(單位:)落在各個小組的頻數(shù)分布如下表:
數(shù)據(jù)分組 | |||||||
頻數(shù) |
(1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在的概率;
(2)求這件產(chǎn)品尺寸的樣本平均數(shù);(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
(3)根據(jù)頻數(shù)分布對應的直方圖,可以認為這種產(chǎn)品尺寸服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差,經(jīng)過計算得,利用該正態(tài)分布,求.
附:①若隨機變量服從正態(tài)分布,則,;②.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右焦點為,,點在橢圓上,且面積的最大值為,周長為6.
(1)求橢圓的方程,并求橢圓的離心率;
(2)已知直線:與橢圓交于不同的兩點,若在軸上存在點,使得與中點的連線與直線垂直,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知變量、之間的線性回歸方程為,且變量、之間的一-組相關(guān)數(shù)據(jù)如下表所示,則下列說法錯誤的是( )
A.可以預測,當時,B.
C.變量、之間呈負相關(guān)關(guān)系D.該回歸直線必過點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校數(shù)學課外興趣小組為研究數(shù)學成績是否與性別有關(guān),先統(tǒng)計本校高三年級每個學生一學期數(shù)學成績平均分(采用百分制),剔除平均分在分以下的學生后,共有男生名,女生名.現(xiàn)采用分層抽樣的方法,從中抽取了名學生,按性別分為兩組,并將兩組學生成績分為組,得到如下所示頻數(shù)分布表.
分數(shù)段 | ||||||
男 | ||||||
女 |
(Ⅰ)規(guī)定分以上為優(yōu)分(含分),請你根據(jù)已知條件作出列聯(lián)表.
優(yōu)分 | 非優(yōu)分 | 合計 | |
男生 | |||
女生 | |||
合計 |
(Ⅱ)根據(jù)你作出的列聯(lián)表判斷是否有以上的把握認為“數(shù)學成績與性別有關(guān)”.
附表及公式:
,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)與圖象在上有兩個不同的交點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知在極坐標系中,點,,是線段的中點,以極點為原點,極軸為軸的正半軸,并在兩坐標系中取相同的長度單位,建立平面直角坐標系,曲線的參數(shù)方程是(為參數(shù)).
(1)求點的直角坐標,并求曲線的普通方程;
(2)設(shè)直線過點交曲線于兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com