分析 先由基本不等式求得b(a-b)范圍,代入原式,再由基本不等式可得.
解答 解:∵a>b>0,∴a-b>0,
∴b(a-b)≤($\frac{b+a-b}{2}$)2=$\frac{{a}^{2}}{4}$,
∴a2+$\frac{2}{b(a-b)}$≥a2+$\frac{2}{\frac{{a}^{2}}{4}}$=a2+$\frac{8}{{a}^{2}}$≥2$\sqrt{{a}^{2}•\frac{8}{{a}^{2}}}$=4$\sqrt{2}$
當(dāng)且僅當(dāng)b=a-b且a2=$\frac{8}{{a}^{2}}$即a=$\root{4}{8}$且b=$\frac{1}{2}$$\root{4}{8}$時取等號.
故答案為:4$\sqrt{2}$.
點評 本題考查基本不等式求最值,先由基本不等式求出b(a-b)≤$\frac{{a}^{2}}{4}$是解決問題的關(guān)鍵,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=$\frac{1}{3}$,b=6 | B. | a=-$\frac{1}{3}$,b=-6 | C. | a=3,b=-$\frac{1}{6}$ | D. | a=-3,b=$\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{1}{3}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 125 | B. | 85 | C. | 45 | D. | 35 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com