13.已知函數(shù)f(x)=x|x-2|.
(1)在下列方格中畫出f(x)的圖象;
(2)寫出f(x)的單調(diào)區(qū)間,并說明函數(shù)單調(diào)性;(不必證明)
(3)若f(x)=1,求x的值.

分析 (1)作函數(shù)f(x)=x|x-2|的圖象,從而解得.
(2)結合圖象寫出函數(shù)的單調(diào)性;
(3)結合圖象可知f(x)=1的一個解為x=1,再解方程x(x-2)=1即可.

解答 解:(1)作函數(shù)f(x)=x|x-2|的圖象如下,

(2)結合圖象可知,
f(x)在(-∞,1],[2,+∞)上單調(diào)遞增,
在(1,2)上單調(diào)遞減;
(3)結合圖象可知,f(x)=1的一個解為x=1,
由x(x-2)=1解得,
x=1+$\sqrt{2}$,或x=1-$\sqrt{2}$(舍去);
故x的值為1或1+$\sqrt{2}$.

點評 本題考查了方程的根與函數(shù)的零點的關系應用及數(shù)形結合的思想應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.若a>b>0,則a2+$\frac{2}{b(a-b)}$的最小值是4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.有5個互不相等的正整數(shù),他們的平均數(shù)為9,方差為4,則這組數(shù)據(jù)中最大的數(shù)等于( 。
A.10B.11C.12D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.10名同學參加投籃比賽,每人投20球,投中的次數(shù)用莖葉圖表示(如圖),設其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有( 。
A.a>b>cB.b>c>aC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=|x2-x|+|x2+$\frac{1}{x}$|(x≠0).
(1)求證:f(x)≥2;
(2)若?x∈[1,3],使f(x)≥$\frac{ax+1}{x}$成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)$f(x)=2sin(2x-\frac{π}{3})+1$
(Ⅰ)求f(x)的最小正周期、最值.
(Ⅱ)若對任意的x1,x2∈[0,$\frac{π}{2}$],都有|f(x1)-f(x2)|<m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.某組合體的三視圖如圖所示,則該幾何體的體積為32+8π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知扇形的圓心角為60°,其弧長為2π,則此扇形的面積為6π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的右焦點為F(1,0),且點P(1,$\frac{3}{2}$)在橢圓C上;
(1)求橢圓C的標準方程;
(2)過橢圓C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}-\frac{5}{3}}$=1上異于其頂點的任意一點Q作圓O:x2+y2=$\frac{4}{3}$的兩條切線,切點分別為M、N(M、N不在坐標軸上),若直線MN在x軸,y軸上的截距分別為m、n,證明:$\frac{1}{3{m}^{2}}+\frac{1}{{n}^{2}}$為定值;
(3)若P1、P2是橢圓C2:$\frac{{x}^{2}}{{a}^{2}}+\frac{3{y}^{2}}{^{2}}=1$上不同兩點,P1P2⊥x軸,圓E過P1、P2,且橢圓C2上任意一點都不在圓E內(nèi),則稱圓E為該橢圓的一個內(nèi)切圓,試問:橢圓C2是否存在過焦點F的內(nèi)切圓?若存在,求出圓心E的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案