5.已知復(fù)數(shù)z=1+i,則$\frac{z^2}{1-z}$=(  )
A.2B.-2C.2iD.-2i

分析 利用復(fù)數(shù)的運(yùn)算法則即可得出.

解答 解:∵復(fù)數(shù)z=1+i,
∴$\frac{z^2}{1-z}$=$\frac{(1+i)^{2}}{1-(1+i)}$=-$\frac{2i}{i}$=-2,
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{ln(-x){,_{\;}}x<0}\\{-lnx,{{,}_{\;}}x>0}\end{array}}$若f(m)>f(-m),則實(shí)數(shù)m的取值范圍是( 。
A.(-1,0)∪(0,1)B.(-∞,-1)∪(0,1)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,且an>0,${a_n}•{S_n}={({\frac{1}{4}})^n}({n∈{N^*}})$
(1)若bn=1+log2(Sn•an),求數(shù)列{bn}的前n項(xiàng)和Tn
(2)若0<θn<$\frac{π}{2}$,2n•an=tanθn,求證:數(shù)列{θn}為等比數(shù)列,并求出其通項(xiàng)公式;
(3)記${c_n}=|{{a_1}-\frac{1}{2}}|+|{{a_2}-\frac{1}{2}}|+|{{a_3}-\frac{1}{2}}|+…+|{{a_n}-\frac{1}{2}}$|,若對(duì)任意的n∈N*,cn≥m恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知復(fù)數(shù)z=$\frac{1}{-1+i}$(i為虛數(shù)單位),則z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)$f(x)=1+x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+…-\frac{{{x^{2014}}}}{2014}+\frac{{{x^{2015}}}}{2015}$,若函數(shù)f(x)的零點(diǎn)都在[a,b](a<b,a,b∈Z)內(nèi),則b-a的最小值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知復(fù)數(shù)z=1+i,則z2(1-z)=( 。
A.2B.-2C.2-2iD.-2-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=xlnx+mx(m∈R)的圖象在點(diǎn)(1,f(1))處的斜率為2.
(1)求實(shí)數(shù)m的值;
(2)設(shè)g(x)=$\frac{f(x)-x}{x-1}$,討論g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)(1,$\frac{\sqrt{6}}{2}$),其左、右焦點(diǎn)分別為F1、F2,離心率為$\frac{\sqrt{2}}{2}$.
(1)求橢圓E的方程;
(2)若A、B分別為橢圓E的左、右頂點(diǎn),動(dòng)點(diǎn)M滿足MB⊥AB,且MA交橢圓E于點(diǎn)P.
(i)求證:$\overrightarrow{OP}$•$\overrightarrow{OM}$為定值;
(ii)設(shè)PB與以PM為直徑的圓的另一交點(diǎn)為Q,問(wèn):直線MQ是否過(guò)定點(diǎn),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.市積極倡導(dǎo)學(xué)生課外讀優(yōu)秀書(shū)籍活動(dòng),從參加此活動(dòng)同學(xué)中,抽取60名同學(xué)在2015年3月讀書(shū)活動(dòng)月的課外讀書(shū)時(shí)間(分鐘,均成整數(shù))分成[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)六組后,得到頻率分布直方圖(如圖),回答下列問(wèn)題.
(Ⅰ)從頻率分布直方圖中,估計(jì)本次課外課優(yōu)秀書(shū)籍活動(dòng)時(shí)間的中位數(shù);
(Ⅱ)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人課外讀書(shū)時(shí)間之差的絕對(duì)值大于10(分鐘)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案