已知在等差數(shù)列{an}中,若m+n=p+q(m,n,p,q∈N*),則am+an=ap+aq.類比上述性質(zhì),在等比數(shù)列{an}中,則有
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:結(jié)合等差數(shù)列與等比數(shù)列具有類比性,且等差數(shù)列與和差有關(guān),等比數(shù)列與積商有關(guān),因此等比數(shù)列類比到等差數(shù)列的:若m+n=p+q(m,n,p,q∈N*),則am•an=ap•aq
解答: 解:類比上述性質(zhì),在等比數(shù)列{an}中,則有若m+n=p+q(m,n,p,q∈N*),則am•an=ap•aq,
故答案為:若m+n=p+q(m,n,p,q∈N*),則am•an=ap•aq
點(diǎn)評(píng):本題主要考查等差數(shù)列類比到等比數(shù)列的類比推理,類比推理一般步驟:①找出等差數(shù)列、等比數(shù)列之間的相似性或者一致性.②用等差數(shù)列的性質(zhì)去推測物等比數(shù)列的性質(zhì),得出一個(gè)明確的命題(或猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在四面體ABCD中,△ABC與△DBC都是邊長為4的正三角形.
(Ⅰ)求證:BC⊥AD;
(Ⅱ)若點(diǎn)D到平面ABC的距離等于3,求二面角A-BC-D的正弦值;
(Ⅲ)設(shè)二面角A-BC-D的大小為θ,猜想θ為何值時(shí),四面體A-BCD的體積最大.(不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人要在一張3×3的表格中填入9個(gè)數(shù)(填的數(shù)有正有負(fù)),他要使得表中任意一行的三個(gè)數(shù)之和為正,而任意一列的三個(gè)數(shù)之和為負(fù).證明:他一定不能寫出滿足要求的數(shù)表.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2x+3y+5z=7,2x-1+3y+5z+1=11,則2x+1+3y+5z-1取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a1=1,a4=
1
8
,則數(shù)列{an}前5項(xiàng)和S5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+1 在x=-
2
3
與x=1時(shí)都取得極值,
(1)求a,b的值.
(2)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin(x+27°)cos(18°-x)+sin(18°-x)cos(x+27°)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a<0,-1<b<0則下列不等式成立的是
 

(1)log0.5(-a)<log0.5(-ab2
(2)(-a)2<(-ab22
(3)(-a)-1>(-ab2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果f(x)=x2,則
lim
△x→0
f(-1+△x)-f(-1)
△x
的值等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案