19.若集合A={x|(x-1)(x+2)>0},集合B={-3,-2,-1,0,1,2},則A∩B等于( 。
A.{0,1}B.{-3,-2}C.{-3,2}D.{-3,-2,1,2}

分析 求出A中不等式的解集確定出A,找出A與B的交集即可.

解答 解:由A中不等式解得:x<-2或x>1,即A=(-∞,-2)∪(1,+∞),
∵B={-3,-2,-1,0,1,2},
∴A∩B={-3,2},
故選:C.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=alnx-$\frac{x}$,g(x)=-3x+4.
(1)若函數(shù)f(x)在點(diǎn)(1,f(1))處的切線為2x-y-3=0,求a,b的值;
(2)若b=-1,當(dāng)x≥1時(shí),f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)求證:對(duì)于一切正整數(shù)n,恒有$\frac{2}{4×{1}^{2}-1}$+$\frac{3}{4×{2}^{2}-1}$+$\frac{4}{4×{3}^{2}-1}$+…+$\frac{n+1}{4×{n}^{2}-1}$>$\frac{1}{4}$ln(2n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a{x}^{2}-2ax+1(x≤-1)}\\{(a-1)x+4a(x>-1)}\end{array}\right.$在(-∞,+∞)內(nèi)是減函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,1)B.(-∞,0)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知命題p:x(6-x)≥-16,命題q:x2+2x+1-m2≤0(m<0),若¬p是¬q的必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知正四面體ABCD的棱長(zhǎng)為$\sqrt{2}$,則其外接球的體積為( 。
A.$\frac{4}{3}$πB.$\frac{{\sqrt{2}}}{3}$πC.$\frac{{\sqrt{3}}}{2}$πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)2a=5b=m,且$\frac{1}{a}$+$\frac{1}$=1,則m等于( 。
A.$\sqrt{10}$B.10C.20D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,AB是圓O的直徑,弦CE交AB于D,CD=4$\sqrt{2}$,DE=$\sqrt{2}$,BD=2.
(I)求圓O的半徑R;
(Ⅱ)求線段BE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列an=1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{n}$(n∈N*
求證:a${\;}_{n}^{2}$+$\frac{7}{4}>$2(a1$+\frac{{a}_{2}}{2}$$+\frac{{a}_{3}}{3}$$+…+\frac{{a}_{n}}{n}$)(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x-1|,x<2}\\{2f(x-2),x≥2}\end{array}\right.$,g(x)=2${\;}^{\frac{x-1}{2}}$,設(shè)方程f(x)=g(x)的根從小到大依次為x1,x2…xn…,n∈N+,則數(shù)列{f(xn)}的前n項(xiàng)和為( 。
A.2n+1-2B.2n-1C.n2D.n2-1

查看答案和解析>>

同步練習(xí)冊(cè)答案