5.已知A,B,C在球O的球面上,AB=1,BC=2,∠ABC=60°,直線OA與截面ABC所成的角為30°,則球O的表面積為( 。
A.B.16πC.$\frac{4}{3}$πD.$\frac{16}{3}$π

分析 根據(jù)A,B,C在球O的球面上,AB=1,BC=2,∠ABC=60°,分析BC即為A,B,C所在平面截球形成圓的直徑,根據(jù)直線AO與平面ABC成30°角,求出球半徑后,代入球的表面積公式,即可得到答案.

解答 解:∵A,B,C在球O的球面上,AB=1,BC=2,∠ABC=60°,
∴BC為△ABC外接圓的直徑,
又∵直線OA與平面ABC成30°角
則球的半徑R=$\frac{1}{cos30°}$=$\frac{2}{\sqrt{3}}$
故球的表面積S=4×π×($\frac{2}{\sqrt{3}}$)2=$\frac{16}{3}$π
故選:D.

點(diǎn)評 本題考查的知識點(diǎn)是球的體積和表面積,其中根據(jù)已知條件求出球的半徑是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=3cos(2x-$\frac{π}{4}$)在[0,$\frac{π}{2}$]上的最大值為M,最小值為m,則M+m等于=3-$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若直線l的傾斜角的取值范圍為[$\frac{π}{3}$,$\frac{3π}{4}$],則直線l的斜率的取值范圍為(-∞,-1]∪[$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.四棱錐P-ABCD的五個頂點(diǎn)都在一個球面上,底面ABCD是矩形,其中AB=3,BC=4,又PA⊥平面ABCD,PA=5,則該球的表面積為50π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知過球面上有三點(diǎn)A,B,C的截面到球心的距離是球半徑的一半,且AB=BC=CA=2,則此球的半徑是(  )
A.$\frac{3}{4}$B.1C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖1,已知正方形ABCD的邊長為2,E、F分別為邊AD、AB的中點(diǎn).將△ABC沿BE折起,使平面ABE⊥平面BCDE.如圖2,點(diǎn)G為AC的中點(diǎn).

(Ⅰ)求證:DG∥平面ABE;
(Ⅱ)求直線CE與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在平行四邊形ABCD中,$\overrightarrow{AC}$•$\overrightarrow{CB}$=0,AC=$\sqrt{2}$,BC=1,若將其沿AC折成直二面角D-AC-B,三棱錐D-ABC的各頂點(diǎn)都在球O的球面上,則球O的表面積為( 。
A.16πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知圓心為C的圓經(jīng)過點(diǎn)A(1,1)和B(2,-2),且圓心C在直線l:x-y+1=0上,則點(diǎn)C與坐標(biāo)原點(diǎn)的距離為( 。
A.$\sqrt{13}$B.5C.13D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直線y=kx+3被圓(x-2)2+(y-3)2=4截得的弦長為$2\sqrt{3}$,則k=( 。
A.±$\frac{\sqrt{3}}{3}$B.±$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案