【題目】已知橢圓是大于的常數(shù))的左、右頂點(diǎn)分別為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線(xiàn)、與直線(xiàn)分別交于、兩點(diǎn)(設(shè)直線(xiàn)的斜率為正數(shù)).

Ⅰ)設(shè)直線(xiàn)、的斜率分別為, ,求證為定值.

Ⅱ)求線(xiàn)段的長(zhǎng)度的最小值.

Ⅲ)判斷存在點(diǎn),使得是等邊三角形的什么條件?(直接寫(xiě)出結(jié)果)

【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ) ;(Ⅲ)既不充分也不必要條件.

【解析】試題分析:

()由題意可得直線(xiàn)的斜率,直線(xiàn)的斜率,據(jù)此計(jì)算則有為定值

()結(jié)合點(diǎn)的坐標(biāo)求得MN的長(zhǎng)度表達(dá)式,結(jié)合均值不等式的結(jié)論可得線(xiàn)段長(zhǎng)度的最小值為

()結(jié)合圓錐曲線(xiàn)的性質(zhì)可知存在點(diǎn),使得是等邊三角形的既不充分也不必要條件.

試題解析:

(Ⅰ)設(shè),則,即,

∴直線(xiàn)的斜率,直線(xiàn)的斜率,

,

為定值

(Ⅱ)直線(xiàn)方程為,∴點(diǎn)坐標(biāo)

直線(xiàn)方程為,∴點(diǎn)坐標(biāo)

,

故線(xiàn)段長(zhǎng)度的最小值為

(Ⅲ)存在點(diǎn),使得是等邊三角形的既不充分也不必要條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng), 取一切非負(fù)實(shí)數(shù)時(shí),若,求的范圍;

(2)若函數(shù)存在極大值,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)a1=3,通項(xiàng)an與前n項(xiàng)和Sn之間滿(mǎn)足2an=SnSn1(n≥2).
(1)求證 是等差數(shù)列,并求公差;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是邊長(zhǎng)為的正方形, 平面, 平面 .

(Ⅰ)求證: ;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn),直線(xiàn)(其中)與曲線(xiàn)相交于、兩點(diǎn).

Ⅰ)若,試判斷曲線(xiàn)的形狀.

Ⅱ)若,以線(xiàn)段、為鄰邊作平行四邊形,其中頂點(diǎn)在曲線(xiàn)上, 為坐標(biāo)原點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三次函數(shù)的導(dǎo)函數(shù),

(1)求的極值;

(2)求證:對(duì)任意,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為宣傳平潭綜合試驗(yàn)區(qū)的“國(guó)際旅游島”建設(shè),試驗(yàn)區(qū)某旅游部門(mén)開(kāi)發(fā)了一種旅游紀(jì)念產(chǎn)品,每件產(chǎn)品的成本是12元,銷(xiāo)售價(jià)是16元,月平均銷(xiāo)售件。后該旅游部門(mén)通過(guò)改進(jìn)工藝,在保證產(chǎn)品成本不變的基礎(chǔ)上,產(chǎn)品的質(zhì)量和技術(shù)含金量提高,于是準(zhǔn)備將產(chǎn)品的售價(jià)提高。經(jīng)市場(chǎng)分析,如果產(chǎn)品的銷(xiāo)售價(jià)提高的百分率為,那么月平均銷(xiāo)售量減少的百分率為。記改進(jìn)工藝后,旅游部門(mén)銷(xiāo)售該紀(jì)念品的月平均利潤(rùn)是(元).

(1)寫(xiě)出的函數(shù)關(guān)系式;

(2)改進(jìn)工藝后,確定該紀(jì)念品的售價(jià),使該旅游部門(mén)銷(xiāo)售該紀(jì)念品的月平均利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司的廣告費(fèi)支出x與銷(xiāo)售額y(單位:萬(wàn)元)之間有下列對(duì)應(yīng)數(shù)據(jù)

x

2

4

5

6

8

y

30

40

60

50

70

回歸方程為 =bx+a,其中b= ,a= ﹣b
(1)畫(huà)出散點(diǎn)圖,并判斷廣告費(fèi)與銷(xiāo)售額是否具有相關(guān)關(guān)系;
(2)根據(jù)表中提供的數(shù)據(jù),求出y與x的回歸方程 =bx+a;
(3)預(yù)測(cè)銷(xiāo)售額為115萬(wàn)元時(shí),大約需要多少萬(wàn)元廣告費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓和拋物線(xiàn)有公共焦點(diǎn) 的中心和的頂點(diǎn)都在坐標(biāo)原點(diǎn),過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)分別相交于兩點(diǎn)(其中點(diǎn)在第四象限內(nèi)).

(1)若,求直線(xiàn)的方程;

(2)若坐標(biāo)原點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)在拋物線(xiàn)上,直線(xiàn)與橢圓有公共點(diǎn),求橢圓的長(zhǎng)軸長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案