分析 把要求的式子化為0.16×(1+0.1+0.01+…),再利用無窮遞縮等比數(shù)列的前n項(xiàng)和公式求得結(jié)果.
解答 解:化簡:0.1$\stackrel{•}{6}$+0.01$\stackrel{•}{6}$+0.001$\stackrel{•}{6}$+…=$\frac{1}{6}$×(1+$\frac{1}{10}$+$\frac{1}{100}$+$\frac{1}{1000}$+…)=$\frac{1}{6}$×$\frac{1}{1-\frac{1}{10}}$=$\frac{5}{27}$,
故答案為:$\frac{5}{27}$.
點(diǎn)評 本題主要考查求無窮遞縮等比數(shù)列的前n項(xiàng)和,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2kπ+$\frac{π}{4}$,2kπ+$\frac{5π}{4}$,k∈Z] | B. | [2kπ+$\frac{5π}{4}$,2kπ+$\frac{9π}{4}$,k∈Z] | ||
C. | [2kπ-$\frac{π}{4}$,2kπ+$\frac{3π}{4}$,k∈Z] | D. | [2kπ+$\frac{3π}{4}$,2kπ+$\frac{7π}{4}$,k∈Z] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com