6.已知拋物線C:y2=4x,若等邊三角形PQF中,P在C上,Q在C的準(zhǔn)線上,F(xiàn)為C的焦點,則|PF|等于( 。
A.8B.4C.3D.2

分析 根據(jù)拋物線的定義可知PQ∥x軸,作FM⊥PQ,則M為PQ中點,故而PF=PQ=2QM=4.

解答 解:∵△PQF是等邊三角形,∴PQ∥x軸
過F作FM⊥PQ于M,則M為PQ的中點,
且QM=2.
∴PF=PQ=2QM=4

故選:B.

點評 本題考查了拋物線的定義與性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.正項數(shù)列{an}的前n項和為Sn,且2Sn=an2+an(n∈N*),設(shè)cn=(-1)n$\frac{{2{a_n}+1}}{{2{S_n}}}$,則數(shù)列{cn}的前2017項的和為-$\frac{2019}{2018}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\sqrt{1+sinx}$+$\sqrt{1-sinx}$,則下列命題中正確命題的序號是①②④.
①f(x)是偶函數(shù);
②f(x)的值域是[$\sqrt{2}$,2];
③當(dāng)x∈[0,$\frac{π}{2}$]時,f(x)單調(diào)遞增;
④當(dāng)且僅當(dāng)x=2kπ±$\frac{π}{2}$(k∈Z)時,f(x)=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若直線y=ax+b通過第一、二、四象限,則圓(x+a)2+(y+b)2=1的圓心位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)z=$\frac{1-i}{i}$,則|z|等于( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.△ABC中,∠BAC=45°,AD⊥BC于D,BD=2,DC=3,則AC邊上中線BE的長等于$\frac{\sqrt{85}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心在極軸上且經(jīng)過極點的圓,射線θ=$\frac{π}{3}$與曲線C2交于點D(4,$\frac{π}{3}$).
(1)求曲線C1的普通方程及C2的直角坐標(biāo)方程;
(2)在極坐標(biāo)系中,A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)是曲線C1的兩點,求$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=1+2sinxcosx
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{2}$,$\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知x>$\frac{1}{2}$,那么函數(shù)y=2x+2+$\frac{1}{2x-1}$的最小值是5.

查看答案和解析>>

同步練習(xí)冊答案