分析 由條件可得2x-1>0,變形可得y=(2x-1)+$\frac{1}{2x-1}$+3,運用基本不等式即可得到所求最小值.
解答 解:x>$\frac{1}{2}$,可得2x-1>0,
即有y=2x+2+$\frac{1}{2x-1}$=(2x-1)+$\frac{1}{2x-1}$+3
≥2$\sqrt{(2x-1)•\frac{1}{2x-1}}$+3=2+3=5.
當且僅當2x-1=$\frac{1}{2x-1}$,即x=1時,取得最小值5.
故答案為:5.
點評 本題考查函數(shù)的最值的求法,注意運用變形和基本不等式,注意滿足的條件:一正二定三等,考查運算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{1}{2}$-$\frac{\sqrt{3}}{4}$ | D. | $\frac{1}{2}$+$\frac{{\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 2$\sqrt{5}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{5}$+4 | B. | 9 | C. | 7 | D. | 2$\sqrt{5}$+2 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com