【題目】下列函數(shù)中,在(0,+∞)內(nèi)為增函數(shù)的是(
A.y=sinx
B.y=x3﹣x
C.y=lnx﹣x
D.y=xex

【答案】D
【解析】解:A.y=sinx在(0,+∞)內(nèi)不具有單調(diào)性; B.y′=2x2﹣1=2 ,則函數(shù)f(x)在 內(nèi)單調(diào)遞減,不滿(mǎn)足條件.
C.y′= ﹣1= ,則函數(shù)f(x)在(1,+∞)內(nèi)單調(diào)遞減,不滿(mǎn)足條件.
D.x∈(0,+∞),y′=ex(x+1)>0,因此函數(shù)f(x)在(0,+∞)內(nèi)為增函數(shù).
故選:D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f(x),如果存在非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有f(x+T)=f(x),那么函數(shù)f(x)就叫做周期函數(shù),已知函數(shù)y=f(x)(x∈R)滿(mǎn)足f(x+2)=f(x),且x∈[﹣1,1]時(shí),f(x)=x2 , 則y=f(x)與y=log5x的圖象的交點(diǎn)個(gè)數(shù)為(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系x′Oy所在的平面為β,直角坐標(biāo)系xOy所在的平面為α,且二面角α﹣y軸﹣β的大小等于30°.已知β內(nèi)的曲線(xiàn)C′的方程是3(x﹣2 2+4y2﹣36=0,則曲線(xiàn)C′在α內(nèi)的射影在坐標(biāo)系xOy下的曲線(xiàn)方程是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax3﹣3x+1(x∈R),若對(duì)于任意的x∈[﹣1,1]都有f(x)≥0成立,則實(shí)數(shù)a的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義函數(shù)序列: ,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn1(x)),則函數(shù)y=f2017(x)的圖象與曲線(xiàn) 的交點(diǎn)坐標(biāo)為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解小學(xué)生的體能情況,抽取了某校一個(gè)年級(jí)的部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得的數(shù)據(jù)整理后,畫(huà)頻率分布直方圖.已知圖中橫軸從左向右的分組為[50,75)、[75,100)、[100,125)、[125,150],縱軸前3個(gè)對(duì)應(yīng)值分別為0.004、0.01、0.02,因失誤第4個(gè)對(duì)應(yīng)值丟失.
(Ⅰ) 已知第1小組頻數(shù)為10,求參加這次測(cè)試的人數(shù)?
(Ⅱ) 求第4小組在y軸上的對(duì)應(yīng)值;
(Ⅲ) 若次數(shù)在75次以上 ( 含75次 ) 為達(dá)標(biāo),試估計(jì)該年級(jí)跳繩測(cè)試達(dá)標(biāo)率是多少?
(Ⅳ) 試估計(jì)這些數(shù)據(jù)的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,∠ADC=90°,AB∥CD,AD=CD=DD1=2AB=2. (Ⅰ) 求證:AD1⊥B1C;
(Ⅱ) 求二面角A1﹣BD﹣C1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,函數(shù)f(x)═log2 +a).
(1)若f(1)<2,求實(shí)數(shù)a的取值范圍;
(2)設(shè)函數(shù)g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],討論函數(shù)g(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域?yàn)镽,如果存在函數(shù)g(x),使得f(x)≥g(x)對(duì)于一切實(shí)數(shù)x都成立,那么稱(chēng)g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).已知函數(shù)f(x)=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(﹣1,0).
(1)若a=1,b=2.寫(xiě)出函數(shù)f(x)的一個(gè)承托函數(shù)(結(jié)論不要求證明);
(2)判斷是否存在常數(shù)a,b,c,使得y=x為函數(shù)f(x)的一個(gè)承托函數(shù),且f(x)為函數(shù) 的一個(gè)承托函數(shù)?若存在,求出a,b,c的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案