已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,離心率e=
1
2

(1)求橢圓C的標準方程;
(2)若直線l與橢圓C相交于A,B兩點,弦AB的中點坐標為(1,
1
2
)
,求直線l的方程.
考點:直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)根據(jù)橢圓C上的點到焦點距離的最大值為3,離心率e=
1
2
,求出a,c,可求b,即可求橢圓C的標準方程;
(2)設(shè)A(x1,y1),B(x2,y2),代入橢圓方程作差,根據(jù)斜率公式、中點坐標公式即可求得斜率,再由點斜式即可求得此時直線方程;
解答: 解:(I)由題意設(shè)橢圓的標準方程為
x2
a2
+
y2
b2
=1(a>b>0)
,
由已知得:a+c=3,e=
c
a
=
1
2
,…(3分)
∴a=2,c=1,∴b2=a2-c2=3,
∴橢圓的標準方程為
x2
4
+
y2
3
=1
…(6分)
(2).設(shè) A(x1,y1),B(x2,y2)則
x1+x2
2
=1,
y1+y2
2
=
1
2

3x12+4y12=12
3x22+4y22=12
,作差可得3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0…(9分)
kAB=
(y1-y2)
(x1-x2)
=
3(x1+x2)
-4(y1+y2)
=
3×2
-4×1
=-
3
2
,
直線l方程y-
1
2
=-
3
2
(x-1)

即3x+2y-4=0…(12分)
點評:本題考查直線與圓錐曲線的位置關(guān)系、橢圓方程的求解,凡涉及弦中點問題一般可考慮“平方差”法,即設(shè)出弦端點坐標,代入圓錐曲線方程作差,由中點坐標公式及斜率公式可得弦斜率及中點坐標關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖中的程序框圖,輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知l,m是兩條不同的直線,α是一個平面,且l∥α,則下列命題正確的是( 。
A、若l∥m,則m∥α
B、若m∥α,則l∥m
C、若l⊥m,則m⊥α
D、若m⊥α,則l⊥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}共有n(n≥3,n∈N)項,且a1=an=1,對每個i(1≤i≤n-1,i∈N),均有
ai+1
ai
∈{
1
2
,1,2}.
(1)當(dāng)n=3時,寫出滿足條件的所有數(shù)列{an}(不必寫出過程);
(2)當(dāng)n=8時,求滿足條件的數(shù)列{an}的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+x-1.
(1)求f(2); 
(2)求f(
1
x
+1);
(3)若f(x)=5,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2,且與直線y=x-
3
相切.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左、右頂點分別為A,B,過點P(3,0)的直線l與橢圓C交于兩點M,N(M在N的右側(cè)),直線AM,BN相交于點Q,求證:點Q在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,角α的頂點是坐標原點,始邊為x軸的正半軸,終邊與單位圓O交于點A(x1,y1),α∈(
π
4
,
π
2
).將角α終邊繞原點按逆時針方向旋轉(zhuǎn)
π
4
,交單位圓于點B(x2,y2).
(1)若x1=
3
5
,求x2
(2)過A,B作x軸的垂線,垂足分別為C,D,記△AOC及△BOD的面積分別為S1,S2,且S1=
4
3
S2,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-mx+m-1,若對于區(qū)間[2,
5
2
]內(nèi)任意兩個相異實數(shù)x1,x2,總有|f(x1)-f(x2)|≤|x1-x2|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
1
x
的定義域為(-∞,0)∪(0,+∞),求f(x)在(-∞,1)上的單調(diào)性并畫出函數(shù)的圖象.

查看答案和解析>>

同步練習(xí)冊答案