12.已知f(x)=$\left\{\begin{array}{l}{lg(x+1)+1,}&{x≥0}\\{lg(1-x)+1,}&{x<0}\end{array}\right.$,若不等式f(ax-1)>f(x-2)在[3,4]上有解,則實(shí)數(shù)a的取值范圍為a>$\frac{2}{3}$或a<0.

分析 由已知,得到x-2∈[1,2],滿足第一段的范圍,又不等式有解,由此將不等式轉(zhuǎn)化為f(ax-1)>1+lg2,進(jìn)一步討論ax-1的范圍,解對(duì)數(shù)不等式即可.

解答 解:因?yàn)椴坏仁絝(ax-1)>f(x-2)在[3,4]上有解,所以x-2∈[1,2],
∴f(ax-1)>[lg(x-1)+1]min=1+lg2,
∴$\left\{\begin{array}{l}{ax-1≥0}\\{lg(ax)+1>1+lg2}\end{array}\right.$或$\left\{\begin{array}{l}{ax-1<0}\\{lg(2-ax)+1>1+lg2}\end{array}\right.$,
解得ax>2或ax<0,
∴a>$\frac{2}{3}$或a<0.

點(diǎn)評(píng) 本題考查了分段函數(shù)以及對(duì)數(shù)不等式的解法;關(guān)鍵是將抽象不等式轉(zhuǎn)化為具體的對(duì)數(shù)不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.關(guān)天x的方程x2+4x-a=0在區(qū)間[-3,0]上有兩個(gè)相異的實(shí)數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=(x2+a)•ex在(0,f(0))處的切線與直線y=-8x平行.
(Ⅰ)求a的值.
(Ⅱ)求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-2x-t(t為常數(shù))有兩個(gè)零點(diǎn),g(x)=$\frac{{x}^{2}+t}{x-1}$.
(Ⅰ)求g(x)的值域(用t表示);
(Ⅱ)當(dāng)t變化時(shí),平行于x軸的一條直線與y=|f(x)|的圖象恰有三個(gè)交點(diǎn),該直線與y=g(x)的圖象的交點(diǎn)橫坐標(biāo)的取值集合為M,求M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,AB=BC=3,AC=4,若$\overrightarrow{AC}$+2$\overrightarrow{DC}$=3$\overrightarrow{BC}$,則向量$\overrightarrow{CD}$在$\overrightarrow{CA}$方向上的投影為(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)y=f(x)是(-1,1)上的偶函數(shù),且在區(qū)間(-1,0)是單調(diào)遞增的,A,B,C是銳角△ABC的三個(gè)內(nèi)角,則下列不等式中一定成立的是(  )
A.f(sinA)>f(cosA)B.f(sinA)>f(cosB)C.f(sinC)<f(cosB)D.f(sinC)>f(cosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知a>0,b>0,c>0,求證:
(1)($\frac{a}$+$\frac{c}{a}$)($\frac{c}$+$\frac{a}$)($\frac{a}{c}$+$\frac{c}$)≥8;
(2)$\frac{b+c}{a}$+$\frac{c+a}$+$\frac{a+b}{c}$≥6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)$\overrightarrow a$=(1,2),$\overrightarrow b$=(2,4),$\overrightarrow c$=λ$\overrightarrow a$+$\overrightarrow b$且$\overrightarrow c$⊥$\overrightarrow a$,則λ=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=x3-ax2-ax在區(qū)間(0,1)內(nèi)只有極小值,則實(shí)數(shù)a的取值范圍是( 。
A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案