17.已知sin(-θ)<0,cos(-θ)<0,則角θ所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 根據(jù)三角函數(shù)符號(hào)的判斷法則,得出角θ所在的象限是第二象限角.

解答 解:sin(-θ)<0,∴sinθ>0,
∴θ為第一、二象限角或y正半軸上的角;
cos(-θ)<0,∴cosθ<0,
∴θ為第二、三象限角或x負(fù)半軸上的角;
∴角θ所在的象限是第二象限角.
故選:B.

點(diǎn)評(píng) 本題考查了三角函數(shù)符號(hào)的判斷問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知某同學(xué)在高二期末考試中,A和B兩道選擇題同時(shí)答對(duì)的概率為$\frac{2}{3}$,在A題答對(duì)的情況下,B題也答對(duì)的概率為$\frac{8}{9}$,則A題答對(duì)的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知O為原點(diǎn),橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)為E,上頂點(diǎn)為F,過橢圓C的右焦點(diǎn)作x軸的垂線交直線EF于點(diǎn)D,若直線OD斜率是直線EF的斜率的$\sqrt{2}$+1倍.
(1)求橢圓C的離心率;
(2)若橢圓C的焦距為2$\sqrt{2}$,設(shè)M(x0,y0)為橢圓C上的動(dòng)點(diǎn),A(-2$\sqrt{2}$,0),直線AM與橢圓交于另一點(diǎn)P,且$\overrightarrow{AM}$=λ$\overrightarrow{AP}$,試探討是否存在實(shí)數(shù)m,使得mx0-λ為定值?若存在,求出m的值及此定值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)全集U={1,2,3,4,5,6},A={1,3,5},B={2,3},則(∁UA)∪B=( 。
A.{2,3,4,6}B.{2,3}C.{1,2,3,5}D.{2,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.($\frac{4}{9}$)${\;}^{-\frac{3}{2}}$-lg$\root{8}{1000}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.計(jì)算:$\root{3}{(e+π)^{3}}$+$\root{4}{(e-π)^{4}}$=2π(e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)a=${∫}_{0}^{π}$(sinx+cosx)dx,則二項(xiàng)式($\root{3}{x}$-$\frac{1}{a\sqrt{x}}$)6的展開式中含x2項(xiàng)的系數(shù)為( 。
A.-6B.-1C.1D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求值:$\sqrt{3}$sin$\frac{π}{12}$+cos$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.從5名男生和3名女生中任選3人參加奧數(shù)訓(xùn)練,設(shè)隨機(jī)變量X表示所選3人中女生的人數(shù)
(1)求“所選3人中女生人數(shù)X>1”的概率.
(2)求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案