A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 利用輔助角公式化積,求出復(fù)合函數(shù)的減區(qū)間,再由f(x)在區(qū)間($\frac{π}{6}$,$\frac{π}{2}$)上遞減列不等式求得ω的范圍,繼而得出ωx+$\frac{π}{3}$=k′π,從而可求ω的值.
解答 解:f(x)=sinωx+$\sqrt{3}$cosωx=2sin(ωx+$\frac{π}{3}$),
由$\frac{π}{2}$+2kπ≤ωx+$\frac{π}{3}$≤$\frac{3π}{2}$+2kπ,k∈Z,
取k=0,得:$\frac{π}{6ω}≤x≤\frac{7π}{6ω}$,由于f(x)在區(qū)間($\frac{π}{6}$,$\frac{π}{2}$)上單調(diào)遞減,
∴$\left\{\begin{array}{l}{\frac{π}{6ω}≤\frac{π}{6}}\\{\frac{7π}{6ω}≥\frac{π}{2}}\end{array}\right.$,解得1≤ω≤$\frac{7}{3}$.
∵f($\frac{π}{6}$)+f($\frac{π}{2}$)=0,
∴x=$\frac{π}{3}$為f(x)=2sin(ωx+$\frac{π}{3}$)的一個(gè)中心的橫坐標(biāo),
∴ωx+$\frac{π}{3}$=k′π,則ω=3k′-1,k′∈Z,
又1≤ω≤$\frac{7}{3}$.
∴ω=2.
故選:A.
點(diǎn)評(píng) 本題考查三角函數(shù)值的恒等變換應(yīng)用,考查y=Asin(ωx+φ)型函數(shù)的圖象和性質(zhì),是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=-x與y=x+2 | B. | y=x與y=-x-2 | C. | y=-x與y=x-2 | D. | y=x與y=-x+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
單價(jià)x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | q | B. | (?p)∧(?q) | C. | p | D. | (?p)∨(?q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\{\left.x\right|-2≤x<\frac{3}{2}\}$ | B. | {x|x<2} | C. | $\{\left.x\right|-2<x<\frac{3}{2}\}$ | D. | {x|x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com