分析 (I)根據(jù)中位線定理得出EF∥AB,故而EF∥平面PAB;
(II)由平面PAC⊥平面ABC可得PE⊥平面ABC,故有PE⊥BC,由AB∥EF,∠ABC=90°可得BC⊥EF,從而BC⊥平面PEF.
解答 證明:(I)∵E,F(xiàn)分別是AC,BC的中點,
∴EF∥AB.
又EF?平面PAB,AB?平面PAB,
∴EF∥平面PAB.
(II)在三角形PAC中,∵PA=PC,E為AC中點,∴PE⊥AC
又∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE?平面PAC,
∴PE⊥平面ABC,∵BC?平面ABC,
∴PE⊥BC,
EF∥AB,∠ABC=90°,
∴EF⊥BC,EF?平面PEF,PE?平面PEF,EF∩PE=E,
∴BC⊥平面PEF.
點評 本題考查了線面平行的判定,面面垂直的性質及線面垂直的判定,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ①③④ | D. | ①②③ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f′(a)>0 | B. | f′(a)<0 | C. | f′(a)=0 | D. | f'(a)不存在 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3個 | B. | 2個 | C. | 1個 | D. | 0個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1008 | B. | -1009 | C. | 10082 | D. | 10092 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com