13.計算下列各式:
(1)${({2\frac{3}{5}})^0}+{2^{-2}}•{|{-0.064}|^{\frac{1}{3}}}-{({\frac{9}{4}})^{\frac{1}{2}}}$;
(2)${lg^2}2+lg2•lg5+lg5-{2^{{{log}_2}3}}•{log_2}$$\frac{1}{8}$.

分析 分別根據(jù)指數(shù)冪和對數(shù)的運(yùn)算性質(zhì)計算即可.

解答 解:(1)${({2\frac{3}{5}})^0}+{2^{-2}}•{|{-0.064}|^{\frac{1}{3}}}-{({\frac{9}{4}})^{\frac{1}{2}}}$=1+$\frac{1}{4}$×($\frac{2}{5}$)-$\frac{3}{2}$=-$\frac{2}{5}$,
(2)原式=$lg2({lg2+lg5})+lg5-3×{log_2}{2^{-3}}$=lg2+lg5-3×(-3)=1+9=10.

點(diǎn)評 本題考查了指數(shù)冪和對數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知sinθ,cosθ是方程x2-($\sqrt{3}-1$)x+m=0的兩根.
(1)求m的值;
(2)求$\frac{sinθ}{1-\frac{cosθ}{sinθ}}$+$\frac{cosθ}{1-tanθ}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列命題中的假命題是( 。
A.?x∈R,lg x=1B.?x∈R,tan x=1C.?x∈R,x3>0D.?x∈R,2x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求由A(1,2)、B(0,1)、C(-2,3)三點(diǎn)所確定的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)5x=4,5y=2,則52x-y=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.“a-1>0”是“a>1”的條件充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)x3+ax+b=0,其中a,b均為實(shí)數(shù).下列條件中不能使得該三次方程僅有一個實(shí)根的是( 。
A.a=-3,b=~3B.a=0,b=2C.a=-3,b=2D.a=1 b=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.方程$sinx+cosx=\frac{{\sqrt{2}}}{2}$解集是{x|x=kπ+(-1)k$\frac{π}{6}$-$\frac{π}{4}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在三棱錐P-ABC中,E、F分別為AC、BC的中點(diǎn).
(Ⅰ)求證:EF∥平面PAB;
(Ⅱ)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求證:BC⊥平面PEF.

查看答案和解析>>

同步練習(xí)冊答案