精英家教網 > 高中數學 > 題目詳情

【題目】已知數列是遞增的等比數列,a1+a4=9,a2a3=8,則數列的前n項和等于,解得a1=1,a4=8,或者a1=8,a4=1,但由于是遞增數列,即a1=1,a4=8,即q3==8,所以q=2.因而數列的前n項和為

【答案】2n-1
【解析】由題意,,解得a1=1,a4=8,或者a1=8,a4=1,但由于是遞增數列,即a1=1,a4=8,即q3==8,所以q=2.因而數列的前n項和為2n-1。
【考點精析】利用等比數列的前n項和公式和等比數列的基本性質對題目進行判斷即可得到答案,需要熟知前項和公式:;{an}為等比數列,則下標成等差數列的對應項成等比數列;{an}既是等差數列又是等比數列== {an}是各項不為零的常數列.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(2015·湖南)如圖,直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E,F分別是BC,CC1的中點。

(1)證明:平面AEF⊥平面B1BCC1
(2)若直線AC1與平面AA1BB1所成的角為45°,求三棱錐F-AEC的體積。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為
(Ⅰ)求頻率分布圖中a的值;
(Ⅱ)估計該企業(yè)的職工對該部門評分不低于80的概率;
(Ⅲ)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為推動乒乓球運動的發(fā)展,某乒乓球比賽允許不同協會的運動員組隊參加. 現有來自甲協會的運動員3名,其中種子選手2名;乙協會的運動員5名,其中種子選手3名.從這8名運動員中隨機選擇4人參加比賽.
(1)設為事件“選出的4人中恰有2名種子選手,且這2名種子選手來自同一個協會”求事件發(fā)生的概率
(2)設為選出的4人中種子選手的人數,求隨機變量的分布列和數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

(2015·重慶)已知函數處取得極值,問(1)確定 α 的值;(2)若 = ,討論的單調性。。


(1)確定的值;
(2)若,討論的單調性。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓E的方程為+=1(ab0),點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M在線段AB上,滿足=2,直線OM的斜率為。
(1)求E的離心率e。
(2)設點C的坐標為(0,-b),N為線段AC的中點,點N關于直線AB的對稱點的縱坐標為,求E的方程

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2015·陜西)如圖1,在直角梯形ABCD中,AD∥BC,BAD=,AB=BC=1,
AD=2, E是AD的中點,0是AC與BE的交點.將△ABE沿BE折起到△A1BE的位置,如圖2.
(1)證明:CD⊥平面A1OC
(2)若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】的對邊分別為為銳角,問:(1)證明: B - A = ,(2)求 sin A + sin C 的取值范圍
(1)(1)證明:
(2)(2)求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數中,同時滿足兩個條件“①x∈R,f( +X)+f( -X)=0;②當﹣ <x< 時,f′(x)>0”的一個函數是(
A.f(x)=sin(2x+
B.f(x)=cos(2x+
C.f(x)=sin(2x﹣
D.f(x)=cos(2x﹣

查看答案和解析>>

同步練習冊答案