下列函數(shù)中:
(1)f(x)=1,g(x)=x0
(2)f(x)=x,g(x)=
x2
x

(3)f(x)=x2,g(x)=(
x
4
(4)f(x)=x3,g(x)=
3x9

表示同一函數(shù)的是
 
考點:判斷兩個函數(shù)是否為同一函數(shù)
專題:函數(shù)的性質(zhì)及應用
分析:分別判斷兩個函數(shù)的定義域和對應法則是否一致,否則不是同一函數(shù).
解答: 解:A.f(x)的定義域為R,而g(x)的定義域為(-∞,0)∪(0,+∞),所以定義域不同,所以(1)不是同一函數(shù).
B.f(x)的定義域為R,而g(x)的定義域為(-∞,0)∪(0,+∞),所以定義域不同,所以(2)不是同一函數(shù).
C.f(x)的定義域為R,而g(x)的定義域為[0,+∞),所以兩個函數(shù)的定義域不相同,所以(3)不是同一函數(shù).
D.f(x)的定義域為R,g(x)的定義域為R,兩個函數(shù)的定義域和對應法則一致,所以(4)是同一函數(shù).
故答案為:(4)
點評:本題主要考查判斷兩個函數(shù)是否為同一函數(shù),判斷的標準就是判斷兩個函數(shù)的定義域和對應法則是否一致,否則不是同一函數(shù).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,將邊長為2的正六邊形ABDEF沿對角線BE翻折,連接AC、FD,形成如圖所示的多面體,且AC=
6

(1)證明:平面ABEF⊥平面BCDE;
(2)求三棱錐E-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(2a2+1)ln(-x)+a(2x-1),a∈R
(1)討論函數(shù)f(x)在其定義域上的單調(diào)性;
(2)判斷函數(shù)f(x)在[-1,-
1
2
]上的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
sinα-3cosα
2sinα+cosα
=
2
3
,求tanα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)log2
1
3
+log23=
 
;
(2)lg2-lg
1
5
=
 
;
(3)lg25+2lg2-lg1=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,若其正視圖為等腰梯形,側(cè)視圖為正三角形,則該幾何體的表面積為(  )
A、2
3
+2
B、4
3
+2
C、6
D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某旅游景點推出了自動購票機,為了解游客買票情況及所需時間等情況,隨機收集了該景點100位游客的相關數(shù)據(jù),如圖所示:(將頻率視為概率)
一次購票1張2張3張4張5張以上
游客人數(shù)x2530y10
所需時間(秒/人)3035404550
已知這50位顧客中一次購物量少于10件的顧客占80%.
(1)求x、y的值;
(2)求顧客一次購票所需時間X的分布列與數(shù)學期望.
(3)某游客去購票時,前面恰有2人在買票,求該游客購票前等候時間超過1.5分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
y2
a2
-
x2
3
=1的兩個焦點分別為F1、F2,離心率為2.
(Ⅰ)求此雙曲線的漸近線l1、l2的方程;
(Ⅱ)若A、B分別為l1、l2上的點,且2|AB|=5|F1F2|,求線段AB的中點M的軌跡方程,并說明軌跡是什么曲線;
(Ⅲ)過點N(1,0)能否作出直線l,使l與雙曲線交于P、Q兩點,且
OP
OQ
=0.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為( 。
A、36π
B、8π
C、
9
2
π
D、
27
8
π

查看答案和解析>>

同步練習冊答案