19.在△ABC中,角A、B、C對(duì)應(yīng)的邊分別是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.
(I)求角A的大;
(Ⅱ)若△ABC的面積S=5$\sqrt{3}$,b=5,求sinBsinC的值.

分析 (I)利用兩角和與差的三角函數(shù)以及二倍角公式化簡(jiǎn)3cosBcosC+2=3sinBsinC+2cos2A,得到cosA的值,即可求解A.
(II)通過三角形的面積求出b、c的值,利用余弦定理以及正弦定理求解即可.

解答 解:(I)由3cosBcosC+2=3sinBsinC+2cos2A,得
2cos2A+3cosA-2=0,-----(2分)
即(2cosA-1)(cosA+2)=0.
解得cosA=$\frac{1}{2}$或cosA=-2(舍去).-----(4分)
因?yàn)?<A<π,所以A=$\frac{π}{3}$.----(6分)
(II)由S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc•$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$bc=5$\sqrt{3}$,得bc=20.
又b=5,所以c=4.-----(8分)
由余弦定理,得a2=b2+c2-2bccosA=25+16-20=21,故a=$\sqrt{21}$.---(10分)
又由正弦定理,得sinBsinC=$\frac{a}$sinA•$\frac{c}{a}$sinA=$\frac{bc}{{a}^{2}}$•sin2A=$\frac{20}{21}$×$\frac{3}{4}$=$\frac{5}{7}$.----(12分)

點(diǎn)評(píng) 本題考查正弦定理以及余弦定理的應(yīng)用,兩角和與差的三角函數(shù),考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2cosxsin(x+$\frac{π}{6}$).
(I)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若f(C)=1,sinB=2sinA,且△ABC的面積為2$\sqrt{3}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2-x+b,其中a,b為常數(shù).
(1)當(dāng)a=-1時(shí),若函數(shù)f(x)在[0,1]上的最小值為$\frac{1}{3}$,求b的值;
(2)討論函數(shù)f(x)在區(qū)間(a,+∞)上的單調(diào)性;
(3)若曲線y=f(x)上存在一點(diǎn)P,使得曲線在點(diǎn)P處的切線與經(jīng)過點(diǎn)P的另一條切線互相垂直,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.為了判斷高中二年級(jí)學(xué)生是否喜歡足球運(yùn)動(dòng)與性別的關(guān)系,現(xiàn)隨機(jī)抽取50名學(xué)生,得到2×2列聯(lián)表:
 喜歡不喜歡總計(jì)
151025
52025
總計(jì)203050
附表:
P(K2≥k00.0100.005 0.001
k06.6357.87910.828
(參考公式k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d)
則有99.5%以上的把握認(rèn)為“喜歡足球與性別有關(guān)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知{an}為正項(xiàng)等比數(shù)列,Sn是它的前n項(xiàng)和.若a1=16,且a4與a7的等差中項(xiàng)為$\frac{9}{8}$,則S5的值(  )
A.29B.31C.33D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow{a}$=(x,2),$\overrightarrow$=(2,-1),且 $\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.$\sqrt{5}$B.$\sqrt{10}$C.$2\sqrt{5}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.邊長(zhǎng)為1的正三角形ABC內(nèi)一點(diǎn)M(包括邊界)滿足:$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{CA}$+λ$\overrightarrow{CB}$(λ∈R),則$\overrightarrow{CA}$•$\overrightarrow{CM}$的取值范圍為( 。
A.[$\frac{1}{3}$,$\frac{1}{2}$]B.[$\frac{1}{3}$,$\frac{2}{3}$]C.[$\frac{1}{2}$,$\frac{2}{3}$]D.[$\frac{1}{3}$,$\frac{5}{6}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.甲、乙、丙三人參加某次招聘會(huì),若甲應(yīng)聘成功的概率為$\frac{4}{9}$,乙、丙應(yīng)聘成功的概率均為$\frac{t}{3}$(0<t<3),且三人是否應(yīng)聘成功是相互獨(dú)立的.
(Ⅰ)若甲、乙、丙都應(yīng)聘成功的概率是$\frac{16}{81}$,求t的值;
(Ⅱ)在(Ⅰ)的條件下,設(shè)ξ表示甲、乙兩人中被聘用的人數(shù),求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=sin(x+\frac{π}{6})-cos(x+\frac{π}{3}),g(x)=2{sin^2}\frac{x}{2}$.
(Ⅰ)求函數(shù)y=f(x)+g(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,A為銳角,且角A、B、C所對(duì)的邊分別為a、b、c,若$a=\sqrt{5}$,$f(A)=\frac{{3\sqrt{5}}}{4}$,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案