設數(shù)列{an}中,若an+1=an+an+2(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”,已知數(shù)列{bn}為“凸數(shù)列”,且b1=1,b2=-2,則數(shù)列{bn}的前2014項和為________.

 

-5

【解析】由“凸數(shù)列”的定義,可知,b1=1,b2=-2,b3=-3,b4=-1,b5=2,b6=3,b7=1,b8=-2,…,故數(shù)列{bn}是周期為6的周期數(shù)列,又b1+b2+b3+b4+b5+b6=0,故數(shù)列{bn}的前2014項和S2014=b1+b2+b3+b4=1-2-3-1=-5.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-5合情推理與演繹推理(解析版) 題型:解答題

某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第n個圖形包含f(n)個小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關系式,并根據(jù)你得到的關系式求出f(n)的表達式;

(3)求+…+的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-1不等關系與不等式(解析版) 題型:解答題

已知a,b,c∈{正實數(shù)},且a2+b2=c2,當n∈N,n>2時比較cn與an+bn的大小.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:5-5數(shù)列的綜合應用(解析版) 題型:填空題

公差d不為0的等差數(shù)列{an}的部分項ak1,ak2,ak3,…構成等比數(shù)列,且k1=1,k2=2,k3=6,則k4=________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:5-5數(shù)列的綜合應用(解析版) 題型:選擇題

在公差不為零的等差數(shù)列{an}中,2a3-a+2a11=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則log2(b6b8)的值為(  )

A.2 B.4 C.8 D.16

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:5-4數(shù)列求和(解析版) 題型:解答題

已知數(shù)列{an}是公差不為0的等差數(shù)列,a1=2,且a2,a3,a4+1成等比數(shù)列.

(1)求數(shù)列{an}的通項公式;

(2)設bn=an+2an,求數(shù)列{bn}的前n項和Sn.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:5-4數(shù)列求和(解析版) 題型:選擇題

設函數(shù)f(x)=xm+ax的導函數(shù)f′(x)=2x+1,則數(shù)列(n∈N*)的前n項和是(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:5-2等差數(shù)列及其前n項和(解析版) 題型:選擇題

已知數(shù)列{an},{bn}都是公差為1的等差數(shù)列,其首項分別為a1,b1,且a1+b1=5,a1,b1∈N*.設cn=abn(n∈N*),則數(shù)列{cn}的前10項和等于(  )

A.55 B.70 C.85 D.100

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:4-4數(shù)系的擴充與復數(shù)的引入(解析版) 題型:選擇題

下面命題:

①0比-i大;

②兩個復數(shù)互為共軛復數(shù),當且僅當和為實數(shù)時成立;

③x+yi=1+i的充要條件為x=y(tǒng)=1;

④如果讓實數(shù)a與ai對應,那么實數(shù)集與純虛數(shù)集一一對應.

其中正確命題的個數(shù)是(  )

A.0 B.1 C.2 D.3

 

查看答案和解析>>

同步練習冊答案