【題目】已知在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù));在極坐標(biāo)系(與直角坐標(biāo)系取相同的單位長(zhǎng)度,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,直線(xiàn)的方程為.

(1)求曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;

(2)求直線(xiàn)被曲線(xiàn)截得的弦長(zhǎng).

【答案】(1),;(2)

【解析】分析(1)把曲線(xiàn)的參數(shù)方程利用同角三角函數(shù)的平方關(guān)系消去參數(shù),化為普通方程,再根據(jù),得到直線(xiàn)的直角坐標(biāo)方程;(2)曲線(xiàn)的圓心到直線(xiàn)的距離,半徑,根據(jù)勾股定理可得直線(xiàn)被曲線(xiàn)截得的弦長(zhǎng)為 .

詳解(1)∵ 曲線(xiàn)的參數(shù)方程為為參數(shù)),

∴ 消去參數(shù)得到曲線(xiàn)的普通方程為;

∵ 直線(xiàn)的極坐標(biāo)方程為,

∴ 直線(xiàn)的直角坐標(biāo)方程為

(2)∵ 曲線(xiàn)的圓心到直線(xiàn)的距離,半徑

∴ 直線(xiàn)被曲線(xiàn)截得的弦長(zhǎng)為 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓和直線(xiàn)l:

(1)證明:不論取何值時(shí),直線(xiàn)和圓總有兩個(gè)不同的交點(diǎn);

(2)求當(dāng)取何值時(shí),直線(xiàn)被圓截得的弦最短,并求最短的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若變量x,y滿(mǎn)足約束條件 ,且z=ax+3y的最小值為7,則a的值為(
A.1
B.2
C.﹣2
D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測(cè),每件一等品都能通過(guò)檢測(cè),每件二等品通過(guò)檢測(cè)的概率為.現(xiàn)有件產(chǎn)品,其中件是一等品, 件是二等品.

(Ⅰ)隨機(jī)選取件產(chǎn)品,設(shè)至少有一件通過(guò)檢測(cè)為事件,求事件的概率;

(Ⅱ)隨機(jī)選取件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為3的正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點(diǎn),滿(mǎn)足AE:EB=CF:FA=CP:PB=1:2(如圖(1)將△AEF沿EF折起到△A1EF的位置,使二面角A1﹣EF﹣B成直二面角,連結(jié)A1B、A1P(如圖(2)).
(1)求證:A1E⊥平面BEP;
(2)求二面角B﹣A1P﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“雙十一網(wǎng)購(gòu)狂歡節(jié)”源于淘寶商城(天貓)2009年11月11 日舉辦的促銷(xiāo)活動(dòng),當(dāng)時(shí)參與的商家數(shù)量和促銷(xiāo)力度均有限,但營(yíng)業(yè)額遠(yuǎn)超預(yù)想的效果,于是11月11日成為天貓舉辦大規(guī)模促銷(xiāo)活動(dòng)的固定日期.如今,中國(guó)的“雙十一”已經(jīng)從一個(gè)節(jié)日變成了全民狂歡的“電商購(gòu)物日”.某淘寶電商分析近8年“雙十一”期間的宣傳費(fèi)用(單位:萬(wàn)元)和利潤(rùn)(單位:十萬(wàn)元)之間的關(guān)系,得到下列數(shù)據(jù):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

(1)請(qǐng)用相關(guān)系數(shù)說(shuō)明之間是否存在線(xiàn)性相關(guān)關(guān)系(當(dāng)時(shí),說(shuō)明之間具有線(xiàn)性相關(guān)關(guān)系);

(2)根據(jù)(1)的判斷結(jié)果,建立之間的回歸方程,并預(yù)測(cè)當(dāng)時(shí),對(duì)應(yīng)的利潤(rùn)為多少(精確到0.1).

附參考公式:回歸方程中最小二乘估計(jì)分別為

,相關(guān)系數(shù)

參考數(shù)據(jù):

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角三角形ABC的斜邊長(zhǎng)AB="2," 現(xiàn)以斜邊AB為軸旋轉(zhuǎn)一周,得旋轉(zhuǎn)體,當(dāng)∠A=30°時(shí),求此旋轉(zhuǎn)體的體積與表面積的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)利用絕對(duì)值及分段函數(shù)知識(shí),將函數(shù)的解析式寫(xiě)成分段函數(shù);

(2)在給出的坐標(biāo)系中畫(huà)出的圖象,并根據(jù)圖象寫(xiě)出函數(shù)的單調(diào)區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C1的極坐標(biāo)方程為ρcosθ=4.
(Ⅰ)M為曲線(xiàn)C1上的動(dòng)點(diǎn),點(diǎn)P在線(xiàn)段OM上,且滿(mǎn)足|OM||OP|=16,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)A的極坐標(biāo)為(2, ),點(diǎn)B在曲線(xiàn)C2上,求△OAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案