【題目】某種產(chǎn)品的廣告費用支出與銷售額之間有如下的對應(yīng)數(shù)據(jù)(單位:萬元):
(1)求關(guān)于的線性回歸直線方程;
(2)據(jù)此估計廣告費用為10萬元時銷售收入的值.
(附:對于線性回歸方程,其中)
參考公式:
【答案】(1) (2)82.5
【解析】試題分析:(1)根據(jù)所給的數(shù)據(jù)先做出橫坐標(biāo)和縱坐標(biāo)的平均數(shù),利用最小乘法寫出線性回歸方程系數(shù)的表達式,把樣本中心點代入求出 的值,得到線性回歸方程;(2)根據(jù)所給的變量 的值,把值代入線性回歸方程,得到對應(yīng)的的值,這里的的值是一個預(yù)報值.
試題解析:(1) ,
,,
所以 ,
所以回歸直線方程為..
(2)時,預(yù)報的值為萬元
【方法點晴】本題主要考查回歸分析和線性回歸方程,屬于難題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)畫出散點圖,確定兩個變量具有線性相關(guān)關(guān)系;②計算的值;③計算回歸系數(shù);④寫出回歸直線方程為;(2) 回歸直線過樣本點中心是一條重要性質(zhì),利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,且(a+c)2=b2+3ac.
(Ⅰ)求角B的大;
(Ⅱ)若b=2,且sinB+sin(C﹣A)=2sin2A,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m≠0,向量 =(m,3m),向量 =(m+1,6),集合A={x|(x﹣m2)(x+m﹣2)=0}.
(1)判斷“ ∥ ”是“| |= ”的什么條件
(2)設(shè)命題p:若 ⊥ ,則m=﹣19,命題q:若集合A的子集個數(shù)為2,則m=1,判斷p∨q,p∧q,¬q的真假,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為一個等腰三角形形狀的空地,腰CA的長為3(百米),底AB的長為4(百米).現(xiàn)決定在空地內(nèi)筑一條筆直的小路EF(寬度不計),將該空地分成一個四邊形和一個三角形,設(shè)分成的四邊形和三角形的周長相等、面積分別為S1和S2 .
(1)若小路一端E為AC的中點,求此時小路的長度;
(2)求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入x的值為2,則輸出的v值為( )
A.9×210﹣2
B.9×210+2
C.9×211+2
D.9×211﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)當(dāng)m=7時,求函數(shù)f(x)的定義域;
(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)采取隨機模擬的方法估計某運動員射擊擊中目標(biāo)的概率.先由計算器給出0到9之間取整數(shù)的隨機數(shù),指定0,1,2,3表示沒有擊中目標(biāo),4,5,6,7,8,9表示集中目標(biāo),以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組如下的隨機數(shù): 7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根據(jù)以上數(shù)據(jù)估計該運動員射擊四次至少擊中三次的概率為: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1與雙曲線C2有相同的左右焦點F1、F2 , P為橢圓C1與雙曲線C2在第一象限內(nèi)的一個公共點,設(shè)橢圓C1與雙曲線C2的離心率為e1 , e2 , 且 = ,若∠F1PF2= ,則雙曲線C2的漸近線方程為( )
A.x±y=0
B.x± y=0
C.x± y=0
D.x±2y=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com