已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
1
1-x
,記F(x)=2f(x)+g(x).
(1)求函數(shù)F(x)的定義域及其零點(diǎn);
(2)若關(guān)于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實(shí)數(shù)m的取值范圍.
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系,函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用對(duì)數(shù)函數(shù)和分式函數(shù)的定義域即可得出F(x)其定義域,利用零點(diǎn)的意義和對(duì)數(shù)函數(shù)的單調(diào)性即可得出;
(2)對(duì)a分類討論可得函數(shù)F(x)的單調(diào)性,進(jìn)而問(wèn)題等價(jià)于關(guān)于x的方程2m2-3m-5=F(x)在區(qū)間[0,1)內(nèi)僅有一解.再利用一元二次不等式的解法即可得出.
解答: 解:(1)F(x)=2f(x)+g(x)=2loga(x+1)+loga
1
1-x
(a>0且a≠1),
要使函數(shù)F(x)有意義,則必須
x+1>0
1-x>0
,解得-1<x<1,
∴函數(shù)F(x)的定義域?yàn)镈=(-1,1).
令F(x)=0,則2loga(x+1)+loga
1
1-x
=0
…(*)
方程變?yōu)?span id="sqxbii7" class="MathJye">loga(x+1)2=loga(1-x),
∴(x+1)2=1-x,即x2+3x=0
解得x1=0,x2=-3,
經(jīng)檢驗(yàn)x=-3是(*)的增根,
∴方程(*)的解為x=0,
∴函數(shù)F(x)的零點(diǎn)為0.
(2)函數(shù)y=x+1,y=
1
1-x
在定義域D上是增函數(shù),可得:
①當(dāng)a>1時(shí),F(xiàn)(x)=2f(x)+g(x)在定義域D上是增函數(shù),
②當(dāng)0<a<1時(shí),函數(shù)F(x)=2f(x)+g(x)在定義域D上是減函數(shù).
因此問(wèn)題等價(jià)于關(guān)于x的方程2m2-3m-5=F(x)在區(qū)間[0,1)內(nèi)僅有一解.
①當(dāng)a>1時(shí),由(2)知,函數(shù)F(x)在[0,1)上是增函數(shù),
∴F(x)∈[0,+∞),
∴只需2m2-3m-5≥0,解得:m≤-1,或m≥
5
2

②當(dāng)0<a<1時(shí),由(2)知,函數(shù)F(x)在[0,1)上是減函數(shù),
∴F(x)∈(-∞,0],
∴只需2m2-3m-5≤0解得:-1≤m≤
5
2
,
綜上所述,當(dāng)0<a<1時(shí):-1≤m≤
5
2
;
當(dāng)a>1時(shí),m≤-1,或m≥
5
2
點(diǎn)評(píng):本題考查了對(duì)數(shù)函數(shù)及分式函數(shù)類型得到的復(fù)合函數(shù)的定義域單調(diào)性及其零點(diǎn)、一元二次不等式的解法、方程的解等價(jià)轉(zhuǎn)化問(wèn)題等基礎(chǔ)知識(shí)與基本技能方法,考查了推理能力和計(jì)算能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若滿足條件
x-y+2≥0
x+y-2≥0
kx-y-2k+1≤0
的點(diǎn)P(x,y)構(gòu)成三角形區(qū)域,則實(shí)數(shù)k的取值范圍是( 。
A、(1,+∞)
B、(0,1)
C、(-1,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線2ax+by-2=0(a,b∈R+)平分圓x2+y2-2x-4y-6=0,則
2
a
+
1
b
的最小值是( 。
A、1
B、5
C、4
2
D、3+2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
ax2-(2a+1)x+2lnx(a>0).
(Ⅰ)若a=
1
3
,求f(x)在[1,3]上的最大值;
(Ⅱ)若a≠
1
2
,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)
1
2
<a<1時(shí),判斷函數(shù)f(x)在區(qū)間[1,2]上有無(wú)零點(diǎn)?寫出推理過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

近年來(lái),我國(guó)許多地方出現(xiàn)霧霾天氣,影響了人們的出行、工作與健康.其形成與PM2.5有關(guān).PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.PM2.5日均值越小,空氣質(zhì)量越好.為加強(qiáng)生態(tài)文明建設(shè),我國(guó)國(guó)家環(huán)保部于2012年2月29日,發(fā)布了《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》見表:
PM2.5日均值k(微克) 空氣質(zhì)量等級(jí)
k≤35 一級(jí)
35<k≤75 二級(jí)
k>75 超標(biāo)
某環(huán)保部門為了了解甲、乙兩市的空氣質(zhì)量狀況,在某月中分別隨機(jī)抽取了甲、乙兩市6天的PM2.5日均值作為樣本,樣本數(shù)據(jù)莖葉圖如圖所示(十位為莖,個(gè)位為葉).
(Ⅰ)求甲、乙兩市PM2.5日均值的樣本平均數(shù),據(jù)此判斷該月中哪個(gè)市的空氣質(zhì)量較好;
(Ⅱ)若從甲市這6天的樣本數(shù)據(jù)中隨機(jī)抽取兩天的數(shù)據(jù),求恰有一天空氣質(zhì)量等級(jí)為一級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高三年級(jí)發(fā)展均衡,各班均有學(xué)生50人,全校共有20個(gè)平行班級(jí).隨機(jī)選擇一個(gè)班,將他們的期中數(shù)學(xué)考試成績(jī)分成六段:[40,50),[50,60),…,[90,100],得到如圖所示頻率分布直方圖.
(1)請(qǐng)估計(jì)該校這20個(gè)班級(jí)中成績(jī)不低于60分的人數(shù);
(2)為了幫助學(xué)生提高數(shù)學(xué)成績(jī),該班班主任決定成立“二幫一”小組:對(duì)成績(jī)?cè)赱40,50)內(nèi)的每位同學(xué),從成績(jī)?cè)赱90,100]中選兩位同學(xué)對(duì)其數(shù)學(xué)學(xué)習(xí)提供幫助,各組成員沒(méi)有重復(fù).已知甲成績(jī)?yōu)?2分,乙成績(jī)?yōu)?5分,求甲、乙恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cosxsinx+2
3
cos2x-
3
,將函數(shù)f(x)的圖象整體向右平移
π
6
個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)記為g(x).
(1)求函數(shù)f(x)的最小正周期和函數(shù)f(x)的單調(diào)增區(qū)間;
(2)當(dāng)x∈[
π
6
π
3
]時(shí),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在平面內(nèi)點(diǎn)P滿足|PM|-|PN|=2
2
,M(-2,0),N( 2,0 ),O(0,0)
(1)求點(diǎn)P的軌跡S;
(2)(理)直線過(guò)點(diǎn)(2,0)與S交于點(diǎn)A,B,求△OAB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,a2n=n-an,a2n+1=an+1,則a1+a2+a3+…+a99=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案