【題目】如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥ AB,M是EC上的點(diǎn)(不與端點(diǎn)重合),F(xiàn)為DA上的點(diǎn),N為BE的中點(diǎn).

(Ⅰ)若M是EC的中點(diǎn),AF=3FD,求證:FN∥平面MBD;
(Ⅱ)若平面MBD與平面ABD所成角(銳角)的余弦值為 ,試確定點(diǎn)M在EC上的位置.

【答案】(Ⅰ)證明:如圖,
∵DA⊥平面EAB,∴DA⊥AE,DA⊥AB,又EA⊥AB,
∴以A為原點(diǎn),分別以AE、AB、AD所在直線為x、y、z軸建立空間直角坐標(biāo)系,
設(shè)CB=4,由CB∥DA,EA=DA=AB=2CB,N為BE的中點(diǎn),M是EC的中點(diǎn),AF=3FD,
得F(0,0,6),N(4,4,0),M(4,4,2),B(0,8,0),D(0,0,8),
C(0,8,4),E(8,0,0).
, ,
設(shè)平面MBD的一個(gè)法向量為 ,
,取z=1,得
= ,∴ ,則FN∥平面MBD;
(Ⅱ)解:設(shè) ,M(x1 , y1 , z1),
=(x1 , y1﹣8,z1﹣4), ,
∴(x1 , y1﹣8,z1﹣4)=(8λ,﹣8λ,﹣4λ),
,得M(8λ,8﹣8λ,4﹣4λ),

設(shè)平面BDM的一個(gè)法向量為 ,
,取z2=1,得
平面ABD的一個(gè)法向量為 ,
由|cos< >|=| |=| |= ,得8λ2﹣6λ+1=0,
解得
∵平面MBD與平面ABD所成角(銳角)的余弦值為 ,∴ ,即M為EC中點(diǎn).
【解析】(Ⅰ)由題意可得AE、AB、AD兩兩垂直,以A為原點(diǎn),分別以AE、AB、AD所在直線為x、y、z軸建立空間直角坐標(biāo)系,求出 的坐標(biāo),再求出平面MBD的一個(gè)法向量 ,由 可得FN∥平面MBD;(Ⅱ)設(shè) ,把M的坐標(biāo)用λ表示,求出平面BDM的一個(gè)法向量,再求出平面ABD的一個(gè)法向量,由兩法向量所成角的余弦值的絕對(duì)值為 求得λ值,則答案可求.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線與平面平行的判定的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的分別為a,b,c,且acosB=(3c﹣b)cosA.
(1)若asinB=2 ,求b;
(2)若a=2 ,且△ABC的面積為 ,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù).

(1)求a的值和函數(shù)f(x)的定義域;

(2)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】Ⅰ)如表所示是某市最近5年個(gè)人年平均收入表節(jié)選.求y關(guān)于x的回歸直線方程,并估計(jì)第6年該市的個(gè)人年平均收入(保留三位有效數(shù)字).

年份x

1

2

3

4

5

收入y(千元)

21

24

27

29

31

其中,, 1:= ,=

Ⅱ)下表是從調(diào)查某行業(yè)個(gè)人平均收入與接受專業(yè)培訓(xùn)時(shí)間關(guān)系得到2×2列聯(lián)表:

受培時(shí)間一年以上

受培時(shí)間不足一年

總計(jì)

收入不低于平均值

60

20

收入低于平均值

10

20

總計(jì)

100

完成上表,并回答:能否在犯錯(cuò)概率不超過(guò)0.05的前提下認(rèn)為收入與接受培訓(xùn)時(shí)間有關(guān)系”.

2:

PK2k0

0.50

0.40

0.10

0.05

0.01

0.005

k0

0.455

0.708

2.706

3.841

6.635

7.879

3:

K2=.(n=a+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,角A、B、C對(duì)應(yīng)的邊分別為ab、c,已知

1)求cosB的值;

2)若b8,cos2A3cosB+C)=1,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中有四張卡片,分別寫有“瓷、都、文、明”四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個(gè)字都取到記為事件,用隨機(jī)模擬的方法估計(jì)事件發(fā)生的概率.利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個(gè)隨機(jī)數(shù),分別代表“瓷、都、文、明”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估計(jì)事件發(fā)生的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增大,下表是該地一農(nóng)業(yè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如下表:

為了研究方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,,得到下表:

1)求關(guān)于的線性回歸方程;

2)求關(guān)于的線性回歸方程;

3)用所求回歸方程預(yù)測(cè),到2020年底,該地儲(chǔ)蓄存款額大約可達(dá)多少?

(附:線性回歸方程:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣x3與g(x)=x3﹣ax的圖象上存在關(guān)于x軸的對(duì)稱點(diǎn),則實(shí)數(shù)a的取值范圍為(
A.(﹣∞,e)
B.(﹣∞,e]
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱中,底面的邊長(zhǎng)為2,側(cè)棱長(zhǎng)為4,是線段上一點(diǎn),是線段的中點(diǎn),的中點(diǎn).以為正交基底,建立如圖所示的空間直角坐標(biāo)系.

(1)若,求直線和平面所成角的正弦值;

(2)若二面角的正弦值為,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案