已知函數(shù)f(x)的圖象是連續(xù)不斷的一條曲線,若f(-1)•f(3)<0,則( 。
A、方程f(x)=0一定有兩實根
B、方程f(x)=0一定無實數(shù)根
C、方程f(x)=0一定有實數(shù)根
D、方程f(x)=0可能無實數(shù)根
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)零點的定義即可判斷.
解答: 解:由于函數(shù)f(x)的圖象是連續(xù)不斷的一條曲線,且f(-1)•f(3)<0,
所以函數(shù)f(x)在(-1,3)一定有零點,
故方程f(x)=0一定有零點.
點評:本題主要考查函數(shù)零點的定義,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

x(2-
1
x
4的展開式中的常數(shù)項為( 。
A、-64B、-32
C、32D、64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)sgn(x)=
1 ,x>0
0,x=0
-1 ,x<0
,f(x)=x2•sgn(x)+x•sgn(-x),若函數(shù)g(x)=f(x)-m有三個零點,則m的取值范圍是( 。
A、m<-
1
4
B、-
1
4
<m<0
C、0<m<
1
4
D、m>
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=1+
4-x2
與直線kx-y+4-2k=0有兩個交點,則實數(shù)k的取值范圍是( 。
A、(0,
5
12
B、(
5
12
,+∞)
C、(
1
3
,
3
4
]
D、(
5
12
,
3
4
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓C:x2+y2-2x-4y+4=0上的點到直線-3x+4y+14=0的距離的最大值是( 。
A、4B、5C、6D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
AB
|=2,|
AC
|=4,
AB
AC
=4,點P是△ABC內(nèi)一動點,且
PA
PB
<0,則點P所在區(qū)域的面積為(  )
A、
π
6
+
3
2
B、
π
2
+
3
2
C、
π
3
-
3
4
D、
π
3
+
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+x2-ax(a∈R).
(1)若f(x)在其定義域上為增函數(shù),求a的取值范圍;
(2)若f(x)存在極值,試求a的取值范圍,并證明所有極值之和小于-3-ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求直線x-2y+1=0關(guān)于直線y-x=1對稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,函數(shù)f(x)=loga(x-1),g(x)=log 
1
a
(3-x)
(1)若h(x)=f(x)-g(x),求函數(shù)h(x)的值域;
(2)利用對數(shù)函數(shù)單調(diào)性討論不等式f(x)+g(x)≥0中x的取值范圍.

查看答案和解析>>

同步練習冊答案