1.如果P={x|x2-5x+4≤0},Q={|0<x<10},那么(  )
A.P∩Q=∅B.P∩Q=PC.P∪Q=PD.P∪Q=R

分析 解不等式求出集合P,進而逐一分析四個答案的真假,可得答案.

解答 解:P={x|x2-5x+4≤0}=[1,4]},Q={|0<x<10}=(0,10),
∴P∩Q=P,
故選:B.

點評 本題考查的知識點是集合的包含關(guān)系判斷及應用,難度不大,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=log${\;}_{\frac{3}{2}}}$(6+x-x2)的單調(diào)遞增區(qū)間是( 。
A.(-∞,$\frac{1}{2}$]B.[$\frac{1}{2}$,+∞)C.(-2,$\frac{1}{2}$]D.[$\frac{1}{2}$,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.某程序框圖如圖所示,該程序運行后輸出的k的值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知原點到直線l的距離為1,圓(x-2)2+(y-$\sqrt{5}$)2=4與直線l相切,則滿足條件的直線l有多少條?( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.以邊長為4的等比三角形ABC的頂點A以及BC邊的中點D為左、右焦點的橢圓過B,C兩點.
(1)求該橢圓的標準方程;
(2)過點D且x軸不垂直的直線l交橢圓于M,N兩點,求證直線BM與CN的交點在一條直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.隨機抽取某高中甲、乙兩個班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖所示.
(1)甲班和乙班同學身高數(shù)據(jù)的中位數(shù)各是多少?計算甲班的樣本方差;
(2)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.等差數(shù)列{an}的前n項和為Sn,已知a1=10,a2為整數(shù),且a3∈[3,5].
(1)求{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知直線a∥平面α,直線a∥平面β,α∩β=b,直線a與直線b( 。
A.相交B.平行C.異面D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若2x+2y=1,則x+y的取值范圍是( 。
A.[0,2]B.[-2,0]C.(-∞,-2]D.[-2,+∞)

查看答案和解析>>

同步練習冊答案