【題目】已知等差數(shù)列的前項(xiàng)和為,集合,集合B={x2﹣y2=1,x,y∈R},請(qǐng)判斷下列三個(gè)命題的真假.若為真,請(qǐng)給予證明;若為假,請(qǐng)舉出反例.
(1)以集合中的元素為坐標(biāo)的點(diǎn)均在同一條直線上;
(2)A∩B至多有一個(gè)元素;
(3)當(dāng)a1≠0時(shí),一定有A∩B≠..
【答案】(1)真命題,點(diǎn)(an,)均在直線y=x+a1上,見(jiàn)解析;(2)真命題,見(jiàn)解析;(3)假命題,見(jiàn)解析
【解析】
(1)在等差數(shù)列中,寫(xiě)出數(shù)列的前n項(xiàng)和的公式,表達(dá)出集合中的元素,得到點(diǎn)的坐標(biāo)適合直線的方程.
(2)列出方程組,利用消元法求出方程組的解,驗(yàn)證這個(gè)方程組只有一個(gè)解,得到這個(gè)集合至多有一個(gè)元素.
(3)驗(yàn)證當(dāng)首項(xiàng)為1,公差為1時(shí),集合A中的元素作為點(diǎn)的坐標(biāo),其橫、縱坐標(biāo)均為正,由于a1=1≠0,如果A∩B≠,根據(jù)(2)的結(jié)論,A∩B至多有一個(gè)元素(x0,y0),當(dāng)a1≠0時(shí),一定有A∩B≠是不正確的.
(1)在等差數(shù)列{an}中,對(duì)一切n∈N*,有Sn=,則,
這表明點(diǎn)(an,)適合方程y=(x+a1),于是點(diǎn)(an,)均在直線y=x+a1上.
(2)設(shè)(x,y)∈A∩B,則x,y是方程組的解,
由方程組消去y得2a1x+a12=﹣4,
當(dāng)a1=0時(shí),方程2a1x+a12=﹣4無(wú)解,此時(shí)A∩B=;
當(dāng)a1≠0時(shí),方程2a1x+a12=﹣4只有一個(gè)解x=,此時(shí),方程組只有一解,
故上述方程組至多有解,∴A∩B至多有一個(gè)元素.
(3)取a1=1,d=1,對(duì)一切的n∈N*,有an=a1+(n﹣1)d=n>0,>0,
這時(shí)集合A中的元素作為點(diǎn)的坐標(biāo),其橫、縱坐標(biāo)均為正,另外,由于a1=1≠0,如果A∩B≠,
那么根據(jù)(2)的結(jié)論,A∩B至多有一個(gè)元素(x0,y0),
而x0==﹣<0,y0==﹣<0,這樣的(x0,y0)A,產(chǎn)生矛盾,故a1=1,d=1時(shí),A∩B=,
∴當(dāng)a1≠0時(shí),一定有A∩B≠是不正確的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一布袋中裝有個(gè)小球,甲,乙兩個(gè)同學(xué)輪流且不放回的抓球,每次最少抓一個(gè)球,最多抓三個(gè)球,規(guī)定:由乙先抓,且誰(shuí)抓到最后一個(gè)球誰(shuí)贏,那么以下推斷中正確的是( )
A. 若,則乙有必贏的策略B. 若,則甲有必贏的策略
C. 若,則甲有必贏的策略D. 若,則乙有必贏的策略
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)時(shí),證明:函數(shù)只有一個(gè)零點(diǎn);
(2)若函數(shù)存在兩個(gè)不同的極值點(diǎn),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當(dāng),函數(shù)圖象上是否存在3條互相平行的切線,并說(shuō)明理由?
(Ⅱ)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),a為實(shí)數(shù),
求函數(shù)的單調(diào)區(qū)間;
若存在實(shí)數(shù)a,使得對(duì)任意恒成立,求實(shí)數(shù)m的取值范圍.提示:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃購(gòu)買(mǎi)1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.在購(gòu)進(jìn)機(jī)器時(shí),可以一次性額外購(gòu)買(mǎi)幾次維修服務(wù),每次維修服務(wù)費(fèi)用200元,另外實(shí)際維修一次還需向維修人員支付小費(fèi),小費(fèi)每次50元.在機(jī)器使用期間,如果維修次數(shù)超過(guò)購(gòu)機(jī)時(shí)購(gòu)買(mǎi)的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費(fèi)用500元,無(wú)需支付小費(fèi).現(xiàn)需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)同時(shí)一次性購(gòu)買(mǎi)幾次維修服務(wù),為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計(jì)表:
維修次數(shù) | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
記x表示1臺(tái)機(jī)器在三年使用期內(nèi)的維修次數(shù),y表示1臺(tái)機(jī)器在維修上所需的費(fèi)用(單位:元),表示購(gòu)機(jī)的同時(shí)購(gòu)買(mǎi)的維修服務(wù)次數(shù).
(1)若=10,求y與x的函數(shù)解析式;
(2)若要求“維修次數(shù)不大于”的頻率不小于0.8,求n的最小值;
(3)假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買(mǎi)10次維修服務(wù),或每臺(tái)都購(gòu)買(mǎi)11次維修服務(wù),分別計(jì)算這100臺(tái)機(jī)器在維修上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購(gòu)買(mǎi)1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買(mǎi)10次還是11次維修服務(wù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在圖1所示的梯形中,,于點(diǎn),且.將梯形沿對(duì)折,使平面平面,如圖2所示,連接,取的中點(diǎn).
(1)求證:平面平面;
(2)在線段上是否存在點(diǎn),使得直線平面?若存在,試確定點(diǎn)的位置,并給予證明;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面,,,,是的中點(diǎn)
(1)求與所成角的大小
(2)求與平面所成的角的大小
(3)求繞直線旋轉(zhuǎn)一周所構(gòu)成的旋轉(zhuǎn)體的體積
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com