19.INPUT  x
IF  9<x  AND  x<100  THEN
a=x\10
b=x MOD 10
x=10*b+a
PRINT  x
END IF
END
若輸入的x為61,則輸出是16.1.

分析 根據(jù)題意,模擬程序框圖的運(yùn)行過程,代入計(jì)算可得結(jié)論.

解答 解:模擬執(zhí)行程序,可得
x=61
滿足條件9<x且x<100,a=6.1,b=1,x=16.1
輸出x的值16.1.
故答案為:16.1.

點(diǎn)評 本題考查的知識點(diǎn)是偽代碼,分段函數(shù),其中由已知中的程序代碼,分析出分段函數(shù)的解析式是解答的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果MP,OM分別是角α=$\frac{3π}{16}$的正弦線和余弦線,那么下列結(jié)論正確的是( 。
A.MP<OM<0B.MP<0<OMC.MP>OM>0D.OM>MP>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=($\frac{1}{4}$)x+($\frac{1}{2}$)x-1(x≤-1)的值域是[8,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.直線x+2ay-1=0與(a-1)x-ay+1=0平行,則a的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知tan($\frac{π}{4}$+α)=$\frac{1}{7}$,α∈($\frac{π}{2}$,π),則tanα的值是-$\frac{3}{4}$;sin2α+sinαcosα的值是$-\frac{3}{25}$; $cos({α-\frac{π}{6}})$的值是$\frac{{3-4\sqrt{3}}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.不等式$\frac{1}{x-1}$<1的解集為p,關(guān)于x的不等式x2+(a-1)x-a>0的解集為q,若¬q是¬p的充分不必要條件,則實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,三棱錐A-BCD中,對棱AB與CD所成角為60°,且AB=CD=α,該三棱錐被一平面所截,截面為平行四邊形EFGH.
(1)求證:CD∥平面EFGH;
(2)E在AD的何處時(shí),截面面積最大?并求面積的最大值;
(3)求證:四邊形EFGH的周長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.下列兩個(gè)對應(yīng)中是集合A到集合B的映射的有(1)(3) 
(1)設(shè)A={1,2,3,4},B={3,4,5,6,7,8,9},對應(yīng)法則f:x→2x+1;
(2)設(shè)A={0,1,2},B={-1,0,1,2},對應(yīng)法則f:x→y=2x-1
(3)設(shè)A=N*,B={0,1},對應(yīng)法則f:x→x除以2所得的余數(shù);
(4)A=B=R,對應(yīng)法則f:x→y=±$\sqrt{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知命題p:“方程$\frac{{x}^{2}}{2m-1}$+$\frac{{y}^{2}}{2-m}$=m+2表示的曲線是橢圓”,命題q:“方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{m-3}$=2m+1表示的曲線是雙曲線”.且p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案