A. | ?x0∈R,${e^{x_0}}$<0 | |
B. | 函數(shù)$f(x)={x^2}-{log_{\frac{1}{2}}}$x的零點個數(shù)為2 | |
C. | 若p∨q為真命題,則p∧q也為真命題 | |
D. | 命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0無實數(shù)根,則m≤0” |
分析 由條件逐一判斷各個選項是否正確,從而得出結(jié)論.
解答 解:根據(jù)指數(shù)函數(shù)的值域可得,命題:?x0∈R,${e^{x_0}}$<0 不正確,故排除A;
由于函數(shù)y=x2 的圖象和y=${log}_{\frac{1}{2}}x$ 的圖象的交點個數(shù)為1,故$f(x)={x^2}-{log_{\frac{1}{2}}}$x的零點個數(shù)為,故排除B;
若p∨q為真命題,則可能p、q中一個為真命題而另一個為假命題,此時,p∧q為假命題,故排除C;
由于命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0無實數(shù)根,則m≤0”,故D正確,
故選:D.
點評 本題主要考查命題真假的判斷,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{23}{42}$ | B. | $\frac{1}{7}$ | C. | $\frac{17}{42}$ | D. | $\frac{5}{42}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -$\frac{5}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{1}{4}$] | B. | (0,$\frac{1}{4}$) | C. | (-$\frac{1}{4}$,0) | D. | [-$\frac{1}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com