【題目】隨著支付寶、微信等支付方式的上線,越來越多的商業(yè)場景可以實現(xiàn)手機(jī)支付.有關(guān)部門為了了解各年齡段的人使用手機(jī)支付的情況,隨機(jī)調(diào)查了50次商業(yè)行為,并把調(diào)查結(jié)果制成下表:
年齡(歲) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
手機(jī)支付 | 4 | 6 | 10 | 6 | 2 | 0 |
(1)若把年齡在的人稱為中青年,年齡在的人稱為中老年,請根據(jù)上表完成以下列聯(lián)表;并判斷是否可以在犯錯誤的概率不超過0.05的前提下,認(rèn)為使用手機(jī)支付與年齡(中青年、中老年)有關(guān)系?
手機(jī)支付 | 未使用手機(jī)支付 | 總計 | |
中青年 | |||
中老年 | |||
總計 |
(2)若從年齡在的被調(diào)查中隨機(jī)選取2人進(jìn)行調(diào)查,記選中的2人中,使用手機(jī)支付的人數(shù)為,求的分布列及數(shù)學(xué)期望.
參考公式:,其中.
獨立性檢驗臨界值表:
0.15 | 0.10 | 0.005 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)不能(2)見解析
【解析】分析:(1)根據(jù)題意完成列聯(lián)表,求出,然后進(jìn)行判斷;
(2)利用超幾何分布可求的分布列及數(shù)學(xué)期望.
詳解:
(1)2×2列聯(lián)表如圖所示:
手機(jī)支付 | 未使用手機(jī)支付 | 總計 | |
中青年 | 20 | 10 | 30 |
中老年 | 8 | 12 | 20 |
總計 | 28 | 22 | 50 |
所以在犯錯誤的概率不超過的前提下不能認(rèn)為使用手機(jī)支付與年齡(中青年、中老年)有關(guān)系.
(2)年齡在的被調(diào)查者共人,其中使用手機(jī)支付的有人,則抽取的人中使用手機(jī)支付的人數(shù)可能取值為,
則 ;
;
所以X的分布列為:
X | 0 | 1 | 2 |
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年北京市進(jìn)行人口抽樣調(diào)查,隨機(jī)抽取了某區(qū)居民人,記錄他們的年齡,將數(shù)據(jù)分成組:,,,…,并整理得到如下頻率分布直方圖:
(Ⅰ)從該區(qū)中隨機(jī)抽取一人,估計其年齡不小于的概率;
(Ⅱ)估計該區(qū)居民年齡的中位數(shù)(精確到);
(Ⅲ)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替,估計該區(qū)居民的平均年齡.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知,函數(shù).
(I)當(dāng)為何值時, 取得最大值?證明你的結(jié)論;
(II) 設(shè)在上是單調(diào)函數(shù),求的取值范圍;
(III)設(shè),當(dāng)時, 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求證:AA1⊥平面ABC;
(2)求證二面角A1﹣BC1﹣B1的余弦值;
(3)證明:在線段BC1上存在點D,使得AD⊥A1B,并求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 是函數(shù)的導(dǎo)函數(shù),則的圖象大致是( )
A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]
C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點,兩定點A,B滿足| |=| |= =2,則點集{P| =λ +μ ,|λ|+|μ|≤1,λ,μ∈R}所表示的區(qū)域的面積是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,,∠ABC=∠BCD=90°,E為PB的中點。
(1)證明:CE∥面PAD.
(2)若直線CE與底面ABCD所成的角為45°,求四棱錐P-ABCD的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)fn(x)=﹣1+x+ + +…+ (x∈R,n∈N+),證明:
(1)對每個n∈N+ , 存在唯一的x∈[ ,1],滿足fn(xn)=0;
(2)對于任意p∈N+ , 由(1)中xn構(gòu)成數(shù)列{xn}滿足0<xn﹣xn+p< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老人,結(jié)果如下:
(Ⅰ)估計該地區(qū)老年人中,需要志愿提供幫助的老年人的比例;
(Ⅱ)能否有99℅的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提出更好的調(diào)查辦法來估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由。
是否需要志愿者 性別 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
參考數(shù)據(jù):
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com