【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老人,結(jié)果如下:
(Ⅰ)估計該地區(qū)老年人中,需要志愿提供幫助的老年人的比例;
(Ⅱ)能否有99℅的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提出更好的調(diào)查辦法來估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由。
是否需要志愿者 性別 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
參考數(shù)據(jù):
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1) 見解析(2) 見解析(3)見解析
【解析】分析:(1)由列聯(lián)表可知調(diào)查的500位老年人中有40+30=70位需要志愿者提供幫助,兩個數(shù)據(jù)求比值得到該地區(qū)老年人中需要幫助的老年人的比例的估算值;(2)根據(jù)列聯(lián)表所給的數(shù)據(jù),代入隨機變量的觀測值公式,得到觀測值的結(jié)果,把觀測值的結(jié)果與臨界值進行比較,看出有多大把握說該地區(qū)的老年人是否需要幫助與性別有關(guān);(3)從樣本數(shù)據(jù)老年人中需要幫助的比例有明顯差異,調(diào)查時,可以先確定該地區(qū)老年人中男、女的比例,再把老年人分成男、女兩層并采用分層抽樣方法比采用簡單隨機抽樣方法更好.
詳解:
(1)調(diào)查的500位老年人中有70位需要志愿者提供幫助,因此該地區(qū)老年人中需要幫助的老年人的比例的估計值為%
(2),由于9.967>6.635,所以有99%的把握認為該地區(qū)的老年人是否需要幫助與性別有關(guān).
(3)由(2)的結(jié)論知,該地區(qū)的老年人是否需要幫助與性別有關(guān),并且從樣本數(shù)據(jù)能看出該地區(qū)男性老年人與女性老年人中需要幫助的比例有明顯差異,因此在調(diào)查時,先確定該地區(qū)老年人中男,女的比例,再把老年人分成男,女兩層并采用分層抽樣方法比采用簡單反隨即抽樣方法更好.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著支付寶、微信等支付方式的上線,越來越多的商業(yè)場景可以實現(xiàn)手機支付.有關(guān)部門為了了解各年齡段的人使用手機支付的情況,隨機調(diào)查了50次商業(yè)行為,并把調(diào)查結(jié)果制成下表:
年齡(歲) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
手機支付 | 4 | 6 | 10 | 6 | 2 | 0 |
(1)若把年齡在的人稱為中青年,年齡在的人稱為中老年,請根據(jù)上表完成以下列聯(lián)表;并判斷是否可以在犯錯誤的概率不超過0.05的前提下,認為使用手機支付與年齡(中青年、中老年)有關(guān)系?
手機支付 | 未使用手機支付 | 總計 | |
中青年 | |||
中老年 | |||
總計 |
(2)若從年齡在的被調(diào)查中隨機選取2人進行調(diào)查,記選中的2人中,使用手機支付的人數(shù)為,求的分布列及數(shù)學(xué)期望.
參考公式:,其中.
獨立性檢驗臨界值表:
0.15 | 0.10 | 0.005 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年9月15日,天宮二號實驗室發(fā)射成功.借天宮二號東風,某廠推出品牌為“玉兔”的新產(chǎn)品.生產(chǎn)“玉兔”的固定成本為20000元,每生產(chǎn)一件“玉兔”需要增加投入100元.根據(jù)初步測算,總收益(單位:元)滿足分段函數(shù),其中,是“玉兔”的月產(chǎn)量(單位:件),總收益=總成本+利潤.
(I)試將利潤元表示為月產(chǎn)量的函數(shù);
(II)當月產(chǎn)量為多少件時利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左右焦點分別為F1 , F2 , 線段OF1 , OF2的中點分別為B1 , B2 , 且△AB1B2是面積為4的直角三角形.
(1)求該橢圓的離心率和標準方程;
(2)過B1做直線l交橢圓于P,Q兩點,使PB2⊥QB2 , 求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) , 是兩個非零向量.則下列命題為真命題的是( )
A.若| + |=| |﹣| |,則 ⊥
B.若 ⊥ ,則| + |=| |﹣| |
C.若| + |=| |﹣| |,則存在實數(shù)λ,使得 =λ
D.若存在實數(shù)λ,使得 =λ ,則| + |=| |﹣| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2009四川卷文)設(shè)矩形的長為,寬為,其比滿足∶=,這種矩形給人以美感,稱為黃金矩形。黃金矩形常應(yīng)用于工藝品設(shè)計中。下面是某工藝品廠隨機抽取兩個批次的初加工矩形寬度與長度的比值樣本:
甲批次:0.598 0.625 0.628 0.595 0.639
乙批次:0.618 0.613 0.592 0.622 0.620
根據(jù)上述兩個樣本來估計兩個批次的總體平均數(shù),與標準值0.618比較,正確結(jié)論是
A. 甲批次的總體平均數(shù)與標準值更接近
B. 乙批次的總體平均數(shù)與標準值更接近
C. 兩個批次總體平均數(shù)與標準值接近程度相同
D. 兩個批次總體平均數(shù)與標準值接近程度不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面是邊長為 的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2 ,M,N分別為PB,PD的中點.
(1)證明:MN∥平面ABCD;
(2)過點A作AQ⊥PC,垂足為點Q,求二面角A﹣MN﹣Q的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有4個人去參加娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(1)求這4個人中恰有2人去參加甲游戲的概率;
(2)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機變量ξ的分布列與數(shù)學(xué)期望Eξ.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com