3.已知F2、F1是雙曲線$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的上、下焦點(diǎn),點(diǎn)F2關(guān)于漸近線的對(duì)稱點(diǎn)恰好落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線的離心率為2.

分析 首先求出F2到漸近線的距離,利用F2關(guān)于漸近線的對(duì)稱點(diǎn)恰落在以F1為圓心,|OF1|為半徑的圓上,可得直角三角形MF1F2,運(yùn)用勾股定理,即可求出雙曲線的離心率.

解答 解:由題意,F(xiàn)1(0,-c),F(xiàn)2(0,c),
一條漸近線方程為y=$\frac{a}$x,則F2到漸近線的距離為$\frac{bc}{\sqrt{{a}^{2}+^{2}}}$=b.
設(shè)F2關(guān)于漸近線的對(duì)稱點(diǎn)為M,F(xiàn)2M與漸近線交于A,
∴|MF2|=2b,A為F2M的中點(diǎn),
又0是F1F2的中點(diǎn),∴OA∥F1M,∴∠F1MF2為直角,
∴△MF1F2為直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2-a2),∴c2=4a2,
即c=2a,e=$\frac{c}{a}$=2.
故答案為:2.

點(diǎn)評(píng) 本題主要考查了雙曲線的幾何性質(zhì)以及有關(guān)離心率和漸近線,考查勾股定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖,大正方形的面積是34,四個(gè)全等直角三角形圍成一個(gè)小正方形,直角三角形的較短邊長(zhǎng)為3,向大正方形內(nèi)拋撒一枚幸運(yùn)小花朵,則小花朵落在小正方形內(nèi)的概率為(  )
A.$\frac{1}{17}$B.$\frac{2}{17}$C.$\frac{3}{17}$D.$\frac{4}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且c=1,點(diǎn)G為△ABC的重心,$\overrightarrow{AG}$⊥$\overrightarrow{BG}$,則a2+b2=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)為奇函數(shù),且當(dāng)x<0時(shí),f(x)=2x2-1,則f(1)的值為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an},a1=2,an=an-1+3,求{an}通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(3,σ2),且ξ在(-∞,6)上取值的概率為0.8,則ξ在(0,3)上取值的概率為( 。
A.0.2B.0.3C.0.8D.0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=ax2+2(2a-1)x+4a-7其中a∈N*,設(shè)x0為f(x)的一個(gè)零點(diǎn),若x0∈Z,則符合條件的a的值有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖所示的程序框圖,若輸入的x的值是1,則輸出的結(jié)果為4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.某中學(xué)共有女生2000人,為了了解學(xué)生體質(zhì)健康狀況,隨機(jī)抽取100名女生進(jìn)行體質(zhì)監(jiān)測(cè),將她們的體重(單位:kg)數(shù)據(jù)加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,則直方圖中x的值為0.024;試估計(jì)該校體重在[55,70)的女生有1000人.

查看答案和解析>>

同步練習(xí)冊(cè)答案