【題目】若函數f(x)=x3+(k﹣1)x2+(k+5)x﹣1在區(qū)間(0,2)上不單調,則實數k的取值范圍為 .
【答案】(﹣5,﹣2)
【解析】解:f′(x)=3x2+2(k﹣1)x+k+5, 若函數f(x)=x3+(k﹣1)x2+(k+5)x﹣1在區(qū)間(0,2)上單調,
則4(k﹣1)2﹣12(k+5)≤0 ①
或 ②
或 ③
或 ④.
解①得﹣2≤k≤7;解②得k≥1;解③得k∈;解④得k≤﹣5.
綜上,滿足函數f(x)=x3+(k﹣1)x2+(k+5)x﹣1在區(qū)間(0,2)上單調的k的范圍為k≤﹣5或k≥﹣2.
于是滿足條件的實數k的范圍為(﹣5,﹣2).
所以答案是:(﹣5,﹣2).
【考點精析】本題主要考查了利用導數研究函數的單調性的相關知識點,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調查情況進行整理后制成下表:
(Ⅰ)完成被調查人員的頻率分布直方圖;
(Ⅱ)若從年齡在[15,25),[25,35)的被調查者中各隨機選取2人進行追蹤調查,求恰有2人不贊成的概率;
(Ⅲ)在(Ⅱ)的條件下,再記選中的4人中不贊成“車輛限行”的人數為,求隨機變量的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的直觀圖和三視圖如圖所示,E是棱CC1上一點.
(1)若CE=2EC1 , 求三棱錐E﹣ACB1的體積.
(2)若E是CC1的中點,求C到平面AEB1的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】廣場舞是現代城市群眾文化、娛樂發(fā)展的產物,也是城市精神文明建設成果的一個重要象征.2016年某校社會實踐小組對某小區(qū)廣場舞的開展狀況進行了年齡的調查,隨機抽取了40名廣場舞者進行調查,將他們年齡分成6段:,,,,,后得到如圖所示的頻率分布直方圖.
(l)計算這40名廣場舞者中年齡分布在的人數;
(2)若從年齡在中的廣場舞者任取2名,求這兩名廣場舞者中恰有一人年齡在的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設fk(n)為關于n的k(k∈N)次多項式.數列{an}的首項a1=1,前n項和為Sn . 對于任意的正整數n,an+Sn=fk(n)都成立. (Ⅰ)若k=0,求證:數列{an}是等比數列;
(Ⅱ)試確定所有的自然數k,使得數列{an}能成等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x2eax , a>0.
(1)證明:函數y=f(x)在(0,+∞)上為增函數;
(2)若方程f(x)﹣1=0有且只有兩個不同的實數根,求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為增強市民的節(jié)能環(huán)保意識,某市面向全市征召義務宣傳志愿者.從符合條件的500名志愿者中隨機抽取100名志愿者,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)間是:[20,25),[25,30),[30,35),[35,40),[40,45].
(Ⅰ)求圖中x的值并根據頻率分布直方圖估計這500名志愿者中年齡在[35,40)歲的人數;
(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取20名參加中心廣場的宣傳活動,再從這20名中采用簡單隨機抽樣方法選取3名志愿者擔任主要負責人.記這3名志愿者中“年齡低于35歲”的人數為X,求X的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com