18.已知a、b、c都是正數(shù),求證:
(I)$\frac{^{2}}{a}$$+\frac{{c}^{2}}$$+\frac{{a}^{2}}{c}$≥a十b+c;
(2)2($\frac{a+b}{2}$-$\sqrt{ab}$≤3($\frac{a+b+c}{3}$-$\root{3}{abc}$)

分析 (1)由a+$\frac{^{2}}{a}$≥2$\sqrt{a•\frac{^{2}}{a}}$=2b,b+$\frac{{c}^{2}}$≥2c,c+$\frac{{a}^{2}}{c}$≥2a,累加即可得證;
(2)運用作差法,結(jié)合三元均值不等式,即可得證.

解答 證明:(1)由a,b,c>0,可得a+$\frac{^{2}}{a}$≥2$\sqrt{a•\frac{^{2}}{a}}$=2b,
b+$\frac{{c}^{2}}$≥2c,c+$\frac{{a}^{2}}{c}$≥2a,
相加可得(a+b+c)+($\frac{^{2}}{a}$$+\frac{{c}^{2}}$$+\frac{{a}^{2}}{c}$)≥2(a+b+c),
即為$\frac{^{2}}{a}$$+\frac{{c}^{2}}$$+\frac{{a}^{2}}{c}$≥a+b+c(當(dāng)且僅當(dāng)a=b=c取得等號);
(2)3($\frac{a+b+c}{3}$-$\root{3}{abc}$)-2($\frac{a+b}{2}$-$\sqrt{ab}$)
=c+2$\sqrt{ab}$-3$\root{3}{abc}$=c+$\sqrt{ab}$+$\sqrt{ab}$-3$\root{3}{abc}$
≥3$\root{3}{abc}$-3$\root{3}{abc}$=0,
可得2($\frac{a+b}{2}$-$\sqrt{ab}$)≤3($\frac{a+b+c}{3}$-$\root{3}{abc}$)(當(dāng)且僅當(dāng)a=b=c取得等號).

點評 本題考查不等式的證明,注意運用均值不等式,考查累加法和作差法的運用,以及推理運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(Ⅰ)已知c>0,關(guān)于x的不等式:x+|x-2c|≥2的解集為R.
求實數(shù)c的取值范圍;
(Ⅱ)若c的最小值為m,又p、q、r是正實數(shù),且滿足p+q+r=3m,求證:p2+q2+r2≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一個袋中裝有5個球,編號為1,2,3,4,5,從中任取3個,用ξ表示取出的3個球中最大編號,則Eξ=4.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知a,b都是正數(shù),求證:a5+b5≥a2b3+a3b2
(2)已知a>0,證明:$\sqrt{{a^2}+\frac{1}{a^2}}≥(a+\frac{1}{a})-(2-\sqrt{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求證:$\frac{1}{2}$<$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<1(n>1,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)正數(shù)a,b,c滿足a+b+c≤3,求證:$\frac{1}{a+1}$+$\frac{1}{b+1}$+$\frac{1}{c+1}$≥$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.有一種密碼,明文由三個字母組成,密碼由明文的這三個字母對應(yīng)的五個數(shù)字組成.編碼規(guī)則如下表.明文由表中每一排取一個字母組成,且第一排取的字母放在第一位,第二排取的字母放在第二位,第三排取的字母放在第三位,對應(yīng)的密碼由明文所取的三個字母對應(yīng)的數(shù)字按相同的次序排成一組組成.(如:明文取的三個字母為AFP,則與它對應(yīng)的五個數(shù)字(密碼)就為11223)
第一排明文字母ABC
密碼數(shù)字111213
第二排明文字母EFG
密碼數(shù)字212223
第三排明文字母MNP
密碼數(shù)字123
(1)假設(shè)密碼是11211,求這個密碼對應(yīng)的明文;
(2)設(shè)隨機變量ξ表示密碼中所含不同數(shù)字的個數(shù).
①求P(ξ=2);
②求隨機變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數(shù)分別為2,3,4,乙袋中紅色、黑色、白色小球的個數(shù)均為3,某人用左右手分別從甲、乙兩袋中取球.
(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;
(2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球(左右手依次各取兩球為兩次取球)的成功取法次數(shù)為隨機變量X,求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某職業(yè)學(xué)校有2000名學(xué)生,校服務(wù)部為了解學(xué)生在校的月消費情況,隨機調(diào)查了100名學(xué)生,并將統(tǒng)計結(jié)果繪成直方圖如圖:
(Ⅰ)試估計該校學(xué)生在校月消費的平均數(shù);
(Ⅱ)根據(jù)校服務(wù)部以往的經(jīng)驗,每個學(xué)生在校的月消費金額x(元)和服務(wù)部可獲得利潤y(元),滿足關(guān)系式:$y=\left\{\begin{array}{l}20,\;\;\;200≤x<400\\ 40,\;\;400≤x<800\\ 80,\;\;800≤x≤1200.\end{array}\right.$根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答下列問題:
(ⅰ)對于任意一個學(xué)生,校服務(wù)部可獲得的利潤記為ξ,求ξ的分布列及數(shù)學(xué)期望.
(ⅱ)若校服務(wù)部計劃每月預(yù)留月利潤的$\frac{2}{9}$,用于資助在校月消費低于400元的學(xué)生,那么受資助的學(xué)生每人每月可獲得多少元?

查看答案和解析>>

同步練習(xí)冊答案